Câu 1: Gọi nguyên hàm của hàm số \(\int\frac{sin\left(x\right)}{sin\left(x\right)+cos\left(x\right)}dx\) có dạng \(ax+bln\left|sin\left(x\right)+cos\left(x\right)\right|+C\) (a,b là các số hữu tỉ) và nguyên hàm của hàm số \(\int cos^2\left(x\right)dx\) có dạng \(cx+\frac{1}{2d}sin\left(dx\right)+C\) ( c,d là các số hữu tỉ) . Khi này tính \(I=2a-2b+2c+d\) bằng
a) 4
b) 5
c) \(\frac{3}{2}\)
d) \(\frac{25}{4}\)
Câu 2. Cho hàm số \(f\left(x\right)=sin\left(ln\left(x\right)\right)\) và \(g\left(x\right)=cos\left(ln\left(x\right)\right)\)
a) Tích nguyên hàm của \(\int\left[f\left(x\right)-g\left(x\right)\right]dx\)
b) Biết \(\int\limits^{e^{\pi}}_1f\left(x\right)dx=\frac{1}{a}\left(e^b+c\right)\) . Tính \(\left(a-c\right)^2\cdot b\)
Câu 3: Cho hàm số \(f\left(x\right)\) có đạo hàm liên tục trên đoạn \(\left[0;1\right]\) thoả mản điều kiện \(f\left(2020x+2019\right)=2020f\left(x\right),\forall x\in R.\) Tính tích phân \(\int\limits^1_03\left[f\left(x\right)\right]^2dx\) bằng
a) \(\frac{7}{3}\left[f\left(1\right)\right]^2\)
b) \(\frac{3}{7}\left(f\left(1\right)\right)^2\)
c) \(7\left[f\left(-1\right)\right]^2\)
d\(\frac{3}{7}\left[f\left(-1\right)\right]^2\)
Câu 1:
\(\int\frac{sinx}{sinx+cosx}dx=\frac{1}{2}\int\frac{sinx+cosx+sinx-cosx}{sinx+cosx}dx=\frac{1}{2}\int dx-\frac{1}{2}\int\frac{cosx-sinx}{sinx+cosx}dx\)
\(=\frac{1}{2}x-\frac{1}{2}\int\frac{d\left(sinx+cosx\right)}{sinx+cosx}=\frac{1}{2}x-\frac{1}{2}ln\left|sinx+cosx\right|+C\)
\(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=-\frac{1}{2}\end{matrix}\right.\)
\(\int cos^2xdx=\int\left(\frac{1}{2}+\frac{1}{2}cos2x\right)dx=\frac{1}{2}x+\frac{1}{4}sin2x+C\)
\(\Rightarrow\left\{{}\begin{matrix}c=\frac{1}{2}\\d=2\end{matrix}\right.\) \(\Rightarrow I=5\)
Câu 2:
\(I=\int\left(sin\left(lnx\right)-cos\left(lnx\right)\right)dx=\int sin\left(lnx\right)dx-\int cos\left(lnx\right)dx=I_1-I_2\)
Xét \(I_2=\int cos\left(lnx\right)dx\)
Đặt \(\left\{{}\begin{matrix}u=cos\left(lnx\right)\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-\frac{1}{x}sin\left(lnx\right)dx\\v=x\end{matrix}\right.\)
\(\Rightarrow I_2=x.cos\left(lnx\right)+\int sin\left(lnx\right)dx=x.cos\left(lnx\right)+I_1\)
\(\Rightarrow I=I_1-\left(x.cos\left(lnx\right)+I_1\right)=-x.cos\left(lnx\right)+C\)
b/ \(I=\int\limits sin\left(lnx\right)dx\)
Đặt \(\left\{{}\begin{matrix}u=sin\left(lnx\right)\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{1}{x}cos\left(lnx\right)dx\\v=x\end{matrix}\right.\)
\(\Rightarrow I=x.sin\left(lnx\right)-\int cos\left(lnx\right)dx\)
Đặt \(\left\{{}\begin{matrix}u=cos\left(lnx\right)\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-\frac{1}{x}sin\left(lnx\right)dx\\v=x\end{matrix}\right.\)
\(\Rightarrow I=x\left[sin\left(lnx\right)-cos\left(lnx\right)\right]-I\)
\(\Rightarrow I=\frac{1}{2}x\left[sin\left(lnx\right)-cos\left(lnx\right)\right]|^{e^{\pi}}_1=\frac{1}{2}\left(e^{\pi}+1\right)\)
\(\Rightarrow a=2;b=\pi;c=1\)