K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2020

Bài này là dạng dễ đó

Ta có: \(\frac{MA'}{AA'}=\frac{S_{MA'B}}{S_{AA'B}}=\frac{S_{MA'C}}{S_{AA'C}}=\frac{S_{MA'B}+S_{MA'C}}{S_{AA'B}+S_{AA'C}}\)\(=\frac{S_{MBC}}{S_{ABC}}\)

Tương tự: \(\frac{MB'}{BB'}=\frac{S_{AMC}}{S_{ABC}}\);\(\frac{MC'}{CC'}=\frac{S_{AMB}}{S_{ABC}}\)

Suy ra: \(\frac{MA'}{AA'}+\frac{MB'}{BB'}+\frac{MC'}{CC'}=\frac{S_{MBC}+S_{AMC}+S_{AMB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)

⇒ điều phải chứng minh

5 tháng 7 2016

A B C M A1 B1 C1 H K

Gọi MK và AH lần lượt là đường cao của các tam giác MBC và tam giác ABC.

Dễ thấy : AH // MK => \(\frac{MK}{AH}=\frac{MA_1}{AA_1}\) 

Ta có : \(\frac{MA_1}{AA_1}=\frac{MK}{AH}=\frac{S_{MBC}}{S_{ABC}}\) (1) . Tương tự : \(\frac{MB_1}{BB_1}=\frac{S_{AMC}}{S_{ABC}}\left(2\right)\) ; \(\frac{MC_1}{CC_1}=\frac{S_{ABM}}{S_{ABC}}\left(3\right)\)

Cộng (1) , (2) , (3) theo vế được : \(\frac{MA_1}{AA_1}+\frac{MB_1}{BB_1}+\frac{MC_1}{CC_1}=\frac{S_{MBC}+S_{MAC}+S_{MAB}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)

Vậy \(\frac{MA_1}{AA_1}+\frac{MB_1}{BB_1}+\frac{MC_1}{CC_1}=1\) (đpcm)

 

26 tháng 4 2021

a) Xét \(\Delta CEF\)và \(\Delta CAB\)có:

\(\widehat{CFE}=\widehat{CBA}\left(=90^0\right)\).

\(\widehat{BCA}\)chung.

\(\Rightarrow\Delta CEF~\Delta CAB\left(g.g\right)\)(điều phải chứng minh).

26 tháng 4 2021

b) Xét \(\Delta ABC\)và \(\Delta FBK\)có:

\(\widehat{KBC}\)chung.

\(\widehat{BAC}=\widehat{BFK}\left(=90^0\right)\).

\(\Rightarrow\Delta ABC~\Delta FBK\left(g.g\right)\).

\(\Rightarrow\frac{BA}{BF}=\frac{BC}{BK}\)(tỉ số đồng dạng).

\(\Rightarrow BA.BK=BF.BC\)(điều phải chứng minh).