K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

Bài 1:

a)  \(A=-3+\frac{1}{1+\frac{1}{1+\frac{1}{3}}}\)

\(A=-3+\frac{1}{1+\frac{1}{\frac{4}{3}}}\)

\(A=-3+\frac{1}{1+\frac{3}{4}}\)

\(A=-3+\frac{1}{\frac{7}{4}}\)

\(A=-3+\frac{4}{7}=-\frac{17}{7}\)

7 tháng 2 2020

c) \(\frac{4+x}{7+y}=\frac{4}{7}\)

\(7\left(4+x\right)=4\left(7+y\right)\)

\(28+7x=28+4y\)

\(7x=4y\)

\(x=\frac{4}{7}y\)(1)

Thế (1) vào x + y = 55, ta được

\(\frac{4}{7}y+y=55\)

\(\frac{11}{7}y=55\)

\(y=35\)

\(x=55-y=55-35=15\)

8 tháng 3 2019

Mk ko biết lm nhưng cứ k thoải mái nha

SORRY

14 tháng 5 2019

\(\frac{\left(\frac{2}{3}\right)^3\cdot\left(-\frac{3}{4}^2\right)\cdot\left(-1\right)^{2003}}{\left(\frac{2}{5}\right)^2\cdot\left(-\frac{5}{12}\right)^3}\)

\(=\frac{\frac{8}{27}\cdot\frac{9}{16}\cdot\left(-1\right)}{\frac{4}{25}\cdot\left(-\frac{125}{1728}\right)}\)

\(=\frac{-\frac{1}{6}}{-\frac{5}{432}}=-\frac{1}{6}:\left(-\frac{5}{432}\right)=\frac{72}{5}\)

14 tháng 5 2019

\(\left[6.\left(\frac{-1}{3}\right)^2-3.\left(\frac{-1}{3}\right)+1\right]:\left(\frac{-1}{3}-1\right)\)

\(=\left[6.\frac{1}{9}-\left(-1\right)+1\right]:\frac{-4}{3}\)

\(=\left[\frac{2}{3}-\left(-1\right)+1\right]:\frac{-4}{3}\)

\(=\frac{8}{3}:\frac{-4}{3}=\frac{-24}{12}=-2\)

~ Hok tốt ~

7 tháng 8 2020

a) \(\left(\frac{11}{12}:\frac{44}{16}\right).\left(\frac{-1}{3}+\frac{1}{2}\right)\) \(=\left(\frac{11}{12}.\frac{16}{44}\right).\left(\frac{-2}{6}+\frac{3}{6}\right)\) \(=\frac{1}{3}.\frac{1}{6}\) \(=\frac{1}{18}\)

b) \(\frac{\left(-5\right)^2.\left(-5\right)^3.16}{5^4.\left(-2\right)^4}\) \(=\frac{\left(-5\right)^5.2^4}{5^4.\left(-2\right)^4}\) \(=5\) (Có sửa đề lại, nếu có sai thì ib mình sửa lại nhé!)

c) \(7,5:\left(\frac{-5}{3}\right)+2\frac{1}{2}:\left(\frac{-5}{3}\right)\) \(=\frac{15}{2}.\left(\frac{-3}{5}\right)+\frac{5}{2}.\left(\frac{-3}{5}\right)\) \(=\frac{-3}{5}.\left(\frac{15}{2}+\frac{5}{2}\right)\)

\(=\frac{-3}{5}.10\) \(=-6\)

d) \(\left(\frac{-1}{2}+\frac{1}{3}\right).\frac{4}{5}+\left(\frac{2}{3}+\frac{1}{2}\right):\frac{5}{4}\) \(=\left(\frac{-1}{2}+\frac{1}{3}\right).\frac{4}{5}+\left(\frac{2}{3}+\frac{1}{2}\right).\frac{4}{5}\)

\(=\frac{4}{5}.\left(\frac{-1}{2}+\frac{1}{3}+\frac{2}{3}+\frac{1}{2}\right)\) \(=\frac{4}{5}.\left(\frac{0}{2}+1\right)\) \(=\frac{4}{5}.1=\frac{4}{5}\)

8 tháng 12 2022

a) (1112:4416).(−13+12)(1112:4416).(−13+12) =(1112.1644).(−26+36)=(1112.1644).(−26+36) =13.16=13.16 =118=118

b) (−5)2.(−5)3.1654.(−2)4(−5)2.(−5)3.1654.(−2)4 =(−5)5.2454.(−2)4=(−5)5.2454.(−2)4 =5=

c) 7,5:(−53)+212:(−53)7,5:(−53)+212:(−53) =152.(−35)+52.(−35)=152.(−35)+52.(−35) =−35.(152+52)=−35.(152+52)

=−35.10=−35.10 =−6=−6

d) (−12+13).45+(23+12):54(−12+13).45+(23+12):54 =(−12+13).45+(23+12).45=(−12+13).45+(23+12).45

=45.(−12+13+23+12)=45.(−12+13+23+12) =45.(02+1)=45.(02+1) =45.1=45

13 tháng 7 2019

#)Giải :

a)\(2009^{\left(1000-1^3\right)\left(1000-2^3\right)...\left(1000-15^3\right)}=2009^{\left(1000-1^3\right)...\left(1000-10^3\right)...\left(1000-15^3\right)}=2009^0=1\)

b)\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...\left(\frac{1}{125}-\frac{1}{5^3}\right)...\left(\frac{1}{125}-\frac{1}{25^3}\right)=\left(\frac{1}{125}-\frac{1}{1^3}\right)...0...\left(\frac{1}{125}-\frac{1}{25^3}\right)=0\)

31 tháng 3 2017

\(\Rightarrow\frac{3}{4}x+5-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}+3\)+3

\(\Rightarrow\left(\frac{3}{4}x-\frac{2}{3}x-\frac{1}{6}x\right)+\left(5+4-1\right)=\frac{1}{3}x+\left(4-\frac{1}{3}+3\right)\)

=>\(\frac{-1}{12}x+8=\frac{1}{3}x+\frac{20}{3}\)\(\Rightarrow\frac{-1}{12}x+8-\frac{1}{3}x=\frac{20}{3}\)

\(\Rightarrow\left(\frac{-1}{12}-\frac{1}{3}\right)x+8=\frac{20}{3}\)

\(\Rightarrow\frac{-5}{12}x+8=\frac{20}{3}\Rightarrow\frac{-5}{12}x=\frac{20}{3}-8\)

\(\Rightarrow\frac{-5}{12}x=\frac{-4}{3}\Rightarrow x=\frac{-4}{3}:\frac{-5}{12}=\frac{16}{5}\)

22 tháng 1 2019

\(1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+\frac{1}{4}.\left(1+2+3+4\right)+...+\frac{1}{20}.\left(1+...+20\right).\)

\(=1+\frac{3}{2}+\frac{6}{3}+\frac{10}{4}+...+\frac{210}{20}\)

\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{21}{2}\)

\(=\frac{2+3+4+5+...+21}{2}=\frac{230}{2}=115\)

26 tháng 6 2016

\(C=\frac{5}{2}\cdot\frac{7}{5}\cdot\frac{9}{7}\cdot\frac{11}{9}\cdot...\cdot\frac{2017}{2015}\cdot\frac{2019}{2017}=\frac{2019}{2}\)

\(D=\left(1-\frac{1}{\frac{2\cdot3}{2}}\right)\cdot\left(1-\frac{1}{\frac{3\cdot4}{2}}\right)\cdot\left(1-\frac{1}{\frac{4\cdot5}{2}}\right)\cdot\left(1-\frac{1}{\frac{5\cdot6}{2}}\right)\cdot...\cdot\left(1-\frac{1}{\frac{39\cdot40}{2}}\right)\)

\(=\left(1-\frac{2}{2\cdot3}\right)\cdot\left(1-\frac{2}{3\cdot4}\right)\cdot\left(1-\frac{2}{4\cdot5}\right)\cdot\left(1-\frac{2}{5\cdot6}\right)\cdot...\cdot\left(1-\frac{2}{39\cdot40}\right)\cdot\)

Nhận xét: \(1-\frac{2}{n\left(n+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n+2\right)\left(n-1\right)}{n\left(n+1\right)}\)nên:

\(D=\frac{4\cdot1}{2\cdot3}\cdot\frac{5\cdot2}{3\cdot4}\cdot\frac{6\cdot3}{4\cdot5}\cdot\frac{7\cdot4}{5\cdot6}\cdot\frac{8\cdot5}{6\cdot7}\cdot...\cdot\frac{41\cdot38}{39\cdot40}=\)

\(D=\frac{4\cdot5\cdot6\cdot7\cdot...\cdot41\times1\cdot2\cdot3\cdot4\cdot...\cdot38}{2\cdot3\cdot4\cdot5\cdot...\cdot39\times3\cdot4\cdot5\cdot6\cdot..\cdot40}=\frac{1}{39}\cdot\frac{41}{3}=\frac{41}{117}\)

21 tháng 6 2015

a) \(\frac{\left(-1\right)}{4}^2+\frac{3}{8}.\left(\frac{-1}{6}\right)-\frac{3}{16}:\left(\frac{-1}{2}\right)=\left(\frac{-1}{4}\right)^2+\left(\frac{-3}{68}\right)-\left(\frac{-3}{8}\right)=\left(\frac{1}{16}\right)+\left(\frac{-3}{68}\right)-\left(\frac{-3}{8}\right)=\frac{5}{272}-\left(\frac{-3}{8}\right)=\frac{107}{272}\)