Tìm tất cả các cặp số nguyên x, y sao cho 20x + 10y = 2010
Giúp mình nha! Mình đang rất vội
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 20x + 10y = 2010
=> 2x+y = 201
Ta có 201 là số lẻ, 2x là số chẵn
=> y là số lẻ => y có dạng 2k+1
=> x = 100-k (k là số nguyên)
Giải:
\(20x+10y=2010\)
⇔\(2x+y=201\)
\(2x\) là số chẵn \(;\) \(201\) là số lẻ ➩ \(y\) là số lẻ . Đặt \(y\) \(2k+1\)
➩\(2x+2k+1=201\)
⇔\(x=\dfrac{201-2k-1}{2}=100-k\)
Vậy \((x;y)=(100-k;2k+1)+k\) ∈ \(z\) (có ∞ ngiệm)
ta có x-y+2xy=3<=>2x-2y+4xy=6<=>2x(2y+1)-(2y+1)=5<=>(2x-1)(2y+1)=7
Vì (2x-1)(2y+1)=7 => \(2x-1\inƯ\left(7\right)\)={1,-1,7,-7}{}
=>\(x\in\){1,0,4,-3}=> y\(\in\){3,-4,0,-1}
Ta có:
x - y + 2xy = 3
Suy ra 2x - 2y + 4xy = 6
Suy ra 2x( 2y + 1 ) - ( 2y + 1 ) = 5
Suy ra ( 2x - 1 ) ( 2y + 1 ) = 7
Vì ( 2x - 1 ) ( 2y + 1 ) = 7
Suy ra 2x -1 thuộc Ư (7) = { 1 ; -1 ; 7 ; -7 }
Suy ra x thuộc { 1 ; 0 ; 4 ; -3 }
y thuộc { 3 ; -4 ; 0 ; -1 }
\(xy-2x+y=1\)
\(\Leftrightarrow x\left(y-2\right)+\left(y-2\right)=-1\)
\(\Leftrightarrow\left(x+1\right)\left(y-2\right)=-1\)
Ta có bảng sau:
\(x+1\) | 1 | -1 |
\(y-2\) | -1 | 1 |
\(x\) | 0 | -2 |
\(y\) | 1 | 3 |
Vậy ta tìm được các cặp số \(\left(0;1\right);\left(-2;3\right)\) thỏa yêu cầu bài toán.
Ta có: \(20x+10y=2010\)
\(\Leftrightarrow2x+y=201\)( chia cả 2 vế cho 10)
\(\Leftrightarrow x=\frac{201-y}{2}\)
Do đó, để x nguyên thì 201-y=2k \(\left(k\in Z\right)\)
\(\Leftrightarrow y=201-2k\)
\(\Rightarrow x=\frac{201-201+2k}{2}=k\)
Vậy các cặp số nguyên x,y thỏa mãn phương trình có dạng \(\left(x;y\right)=\left(k;201-k\right)\)với \(k\in Z\)
Bạn ơi, giải theo cách lớp 6 mà bn!