Giải phương trình sau: \(x^2+\frac{6}{x}-3x=2-\frac{4}{x^2}\)
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!! PLEASE!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2 + 4/x^2 -3x + 6/x -2 =0
(x^2 +4/x^2) -3(x -2/x) -2 =0
Đặt t = x-2/x
Suy ra
t^2 + 4 - 3t-2=0
t^2- 3t + 2 = 0
(t-1) (t-2) = 0
t=1 hay t =2
Nếu t =1
x-2/x =1
(x^2-2)/x =1
x^2-2 = x
x^2-x-2=0
(x+1) (x-2)=0
x= -1 hay x= 2
Nếu t = 2
x- 2/x =2
(x^2-2)/x =2
x^2 -2 = 2x
x^2- 2x-2 =0
(x-1)^2 -3 =0
(x-1)^2 =3
x-1 = căn 3 hay x -1 = âm căn 3
x= căn 3 + 1 hay x = 1 + âm căn 3
Vậy....
\(VT-VP=\Sigma_{cyc}\frac{2a+b+c}{a^2b\left(a+b+c\right)}\left(a-b\right)^2\ge0\)
hay \(\frac{a}{c^2}+\frac{1}{a}\ge\frac{2}{c}\)\(\Leftrightarrow\)\(\frac{a}{c^2}\ge\frac{2}{c}-\frac{1}{a}\)\(\Rightarrow\)\(VT\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
"=" \(\Leftrightarrow\)\(a=b=c\)
a) 2x-mx+2m-1=0
\(\Leftrightarrow x\left(2-m\right)=1-2m\left(1\right)\)
*Nếu \(m=2\)thay vào (1) ta được:
\(x\left(2-2\right)=1-2\cdot2\Leftrightarrow0x=-3\)
Với \(m=\frac{1}{2}\) ,pt trên vô nghiệm.
*Nếu \(m\ne2\)thì phương trình (1) có nghiệm \(x=\frac{1-2m}{2-m}\)
Vậy \(m\ne2\)thì phương trình có nghiệm duy nhất \(x=\frac{1-2m}{2-m}\)
b)c) mình biến đổi thôi, phần lập luận bạn tự lập luận nhé
b)\(mx+4=2x+m^2\Leftrightarrow mx-2x=m^2-4\Leftrightarrow x\left(m-2\right)=\left(m-2\right)\left(m+2\right)\)
*Nếu \(m\ne2\).....pt có ngiệm x=m+2
*Nếu \(m=2\)....pt có vô số nghiệm
Vậy ....
c)\(\left(m^2-4\right)x+m-2=0\Leftrightarrow\left(m-2\right)\left(m+2\right)x=-\left(m-2\right)\)
Nếu \(m=2\).... pt có vô số nghiệm
Nếu \(m=-2\)..... pt vô nghiệm
Nếu \(m\ne\pm2\).... pt có nghiệm \(x=-m-2\)
Để nghiệm \(x=-m-2\)dương \(\Leftrightarrow m+2< 0\Leftrightarrow m< -2\ne\pm2\)
Vậy m<-2
ĐKXĐ: ...
\(\Leftrightarrow x^2+\frac{4}{x^2}-3\left(x-\frac{2}{x}\right)-2=0\)
Đặt \(x-\frac{2}{x}=a\Rightarrow x^2+\frac{4}{x^2}=a^2+4\)
\(\Rightarrow a^2+4-3a-2=0\Leftrightarrow a^2-3a+2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{2}{x}=1\\x-\frac{2}{x}=2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2=0\\x^2-2x-2=0\end{matrix}\right.\)
Lời giải:
ĐKXĐ: $x\neq 0$
Nhân 2 vế với $x^2$ ta có:
$x^4+6x-3x^3=2x^2-4$
$\Leftrightarrow x^4-3x^3-2x^2+6x+4=0$
$\Leftrightarrow x^4-2x^3-x^3+2x^2-4x^2+8x-2x+4=0$
$\Leftrightarrow x^3(x-2)-x^2(x-2)-4x(x-2)-2(x-2)=0$
$\Leftrightarrow (x-2)(x^3-x^2-4x-2)=0$
$\Leftrightarrow (x-2)(x^3+x^2-2x^2-2x-2x-2)=0$
$\Leftrightarrow (x-2)[x^2(x+1)-2x(x+1)-2(x+1)]=0$
$\Leftrightarrow (x-2)(x+1)(x^2-2x-2)=0$
\(\Rightarrow \left[\begin{matrix} x=2\\ x=-1\\ x=1\pm \sqrt{3}\end{matrix}\right.\)(đều thỏa mãn)
Vậy......