CÓ AI CÒN THỨC KO GIÚP MIK VS
chung minh :75*(4^1999 +4^1998+ 4^1997 +... +4 +1) + 25 chia het cho 100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(S=1+4+4^2+......+4^{1999}\)
\(\Rightarrow4S=4+4^2+4^3+....+4^{2000}\)
\(\Rightarrow4S-S=\left(4+4^2+4^3+....+4^{2000}\right)-\left(1+4+4^2+.....+4^{1999}\right)\)
\(\Rightarrow3S=4^{2000}-1\Rightarrow S=\frac{4^{2000}-1}{3}\)
Khi đó \(A=75.S=75.\frac{4^{2000}-1}{3}=\frac{75.\left(4^{2000}-1\right)}{3}=\frac{75}{3}.\left(4^{2000}-1\right)=25.\left(4^{2000}-1\right)=25.4^{2000}-25\)
Ta có: 42000-1=(44)500-1=(...6)-1=....5
=>25.42000-25=25.(....5)-25=(...5)-25=....0 chia hết cho 100
Vậy ta có điều phải chứng minh
75 chia hết cho 25.
42007 + ... + 4 + 1 chia 4 dư 1 hay không chia hết cho 4
=> 75(42007 + ... + 4 + 1) không chia hết cho 100.
Đặt \(B=1+4+4^2+...+4^{1998}+4^{1999}\)
\(\Rightarrow4B=4+4^2+4^3+...+4^{1999}+4^{2000}\)
\(\Rightarrow4B-B=\left(4+4^2+4^3+...+4^{2000}\right)-\left(1+4+4^2+...+4^{1999}\right)\)
\(\Rightarrow3B=4^{2000}-1\)
\(\Rightarrow B=\dfrac{4^{2000}-1}{3}\)
Khi đó ta có:
\(A=75.B=75.\dfrac{4^{2000}-1}{3}=\dfrac{75.\left(4^{2000}-1\right)}{3}=\dfrac{75}{3}.\left(4^{2000}-1\right)=25.\left(4^{2000}-1\right)=25.4^{2000}-25\)
Ta có: \(4^{2000}-1=\left(4^4\right)^{500}-1=\left(...6\right)-1=...5\)
\(\Rightarrow25.4^{2000}-25=25.\left(...5\right)-25=\left(...5\right)-25=...0⋮100\left(đpcm\right)\)
Ta có:
\(A=75.\left(4^{1999}+4^{1998}+...+4^2+4+1\right)+25\)
\(A=25.3.\left(4^{1999}+4^{1998}+...+4^2+4+1\right)+25\) \(A=25.\left(4-1\right).\left(4^{1999}+4^{1998}+...+4^2+4+1\right)+25\)
\(A=25.\left(4^{2000}+4^{1999}+...+4^3+4^2+4-4^{1999}-4^{1998}-...-4^2-4-1\right)+25\)\(A=25.\left(4^{2000}-1\right)+25\)
\(A=25.\left(4^{2000}-1+1\right)\)
\(A=25.4^{2000}=25.4.4^{1999}=100.4^{1999}\)Vây:A là số chia hết cho 100
1) A = 19971999 - 19971998
=> A = 19971998.(1997-1)
=> A = 19971998 . 1996
Vậy a chia hết cho 4 (vì 1996 chia hết cho 4)
2) B = 19971998 - 19981999
Mà 19971998 là số lẻ; 19981999
=> 19971998 - 19981999 là số lẻ
Vậy đề bài sai.
Đặt B = 42004 + 42003 + 42002 + 42001 + ... + 42 + 4 + 1 (có 2005 số; 2005 : 2 dư 1)
B = (42004 + 42003) + (42002 + 42001) + ... + (42 + 4) + 1
B = 42003.(4 + 1) + 42001.(4 + 1) + ... + 4.(4 + 1) + 1
B = 42003.5 + 42001.5 + ... + 4.5 + 1
B = 5.(42003 + 42001 + ... + 4) + 1
=> B = 5 x k + 1 ( k thuộc N*; k chia hết cho 4)
=> A = 75 x (5 x k + 1) + 25
=> A = 75 x 5 x k + 75 + 25
=> A = ...00 + 100
=> A = ..00 chia hết cho 100
A = 75.4^2004 + ... + 75.4 + 75 + 25
= 25.3.4^2004 + ... + 25.3.4 + 100
= 100.3.4^2003 + ... + 100.3 + 100
=> A chia hết cho 100
\(A=75\left(4^{2004}+4^{2003}+....+4+1\right)+25\)
\(\Rightarrow A=75.4^{2004}+75.4^{2003}+....+75.4+75.1+25\)
\(\Rightarrow A=\left(75.4\right).4^{2003}+....+300+100\)
\(\Rightarrow A=300.4^{2003}+.....+300+100\) chia hết cho 100
=> ĐPCM
B=4^2004+4^2003+...+4^2+4+1
Xét 4B = 4^2005+4^2004+...+4^2+4
=> 4B-B = (4^2005+4^2004+...4^3+4^2+4) - (4^2004+4^2003+...+4^2+4+1)
=> 3B = 4^2005 - 1 => B = (4^2005 - 1)/3
=> A = 75 (4^2005 - 1)/3 +25
= 25 (4^2005 -1) +25
= 25 x 4 ^ 2005
= 25 x 4 x 4 ^ 2004 = 100 x4 ^ 2004
\(A=75.(4^{2004}+4^{2003}+...+4^2+4+1)+25\)
Đặt \(B=4^{2004}+4^{2003}+...+4^2+4+1\)
\(4B=4^{2005}+4^{2004}+...+4^3+4^2+4\)
\(4B-B=(4^{2005}+4^{2004}+...+4^3+4^2+4)-\left(4^{2004}+4^{2003}+...+4^2+4+1\right)\)
\(3B=4^{2005}-1\)
\(B=\frac{4^{2005}-1}{3}\)
Thay B vào A ta có
\(A=75.\text{}\text{}\frac{4^{2005}-1}{3}+25\)
\(A=25.3.(\text{}\text{}\frac{4^{2005}-1}{3})+25\)
\(A=25.(\text{}\text{}4^{2005}-1)+25\)
\(A=25.(\text{}\text{}4^{2005}-1+1)\)
\(A=25.\text{}\text{}4^{2005}\)
Hok tốt !!!!!!!!!
\(A=75\left(4^{2004}+4^{2003}+4^{2002}+...+4^2+4+1\right)+25\)
\(=75\cdot4^{2004}+75\cdot4^{2003}+75\cdot4^{2002}+...+7\cdot4^2+75\cdot4+\left(75+25\right)\)
\(=3\cdot\left(25\cdot4\right)\cdot4^{2003}+3\cdot\left(25\cdot4\right)\cdot4^{2002}+3\cdot\left(25\cdot4\right)\cdot4^{2001}+...+3\cdot\left(25\cdot4\right)\cdot4+3\cdot\left(25\cdot4\right)+25\cdot4\)
\(=3\cdot100\cdot4^{2003}+3\cdot100\cdot4^{2002}+3\cdot100\cdot4^{2001}+...+3\cdot100\cdot4+3\cdot100+100\)
Mà:
\(3\cdot100\cdot4^{2003}⋮100\)
\(3\cdot100\cdot4^{2002}⋮100\)
\(3\cdot100\cdot4^{2001}⋮100\)
\(...\)
\(3\cdot100⋮100\)
\(100⋮100\)
\(\Rightarrow3\cdot100\cdot4^{2003}+3\cdot100\cdot4^{2002}+3\cdot100\cdot4^{2001}+...+3\cdot100\cdot4+3\cdot100+100⋮100\)
\(\Rightarrow A⋮100\left(đpcm\right)\)
Đặt A = 75 (41999 + 41998 + .... + 42 + 4 + 1) + 25
Đặt B = 41999 + 41998 + .... + 42 + 4 + 1
=> 4B = 42000 + 41999 + 41998 + .... + 42 + 4
=> 4B - B = 42000 + 41999 + 41998 + .... + 42 + 4 - 41999 - 41998 - .... -42 - 4 - 1
=> 3B = 42000 - 1
=> B = \(\frac{4^{2000}-1}{3}\)
Thay vào A có :
A = 75 . \(\frac{4^{2000}-1}{3}\)+ 25
= 25 . 3 . \(\frac{4^{2000}-1}{3}\)+ 25
= 25( 42000 - 1 + 1)
= 25 . 42000
Mà 25\(⋮\)25 ; 42000 \(⋮\)4 => A \(⋮\) 25.4 =100