K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

1) cho 2005 số đó là 2006!+2,2006!+3,2006!+4,...,2006!+2006

Ta thấy 2006!+2 chia hết cho 2

             2006!+3 chia hết cho 3

             2006!+4 chia hết cho 4

             .....................................

             2006!+2006 chia hết cho 2006

Vậy cả 2005 số trên đều là hợp số

-> điều phải chứng minh

10 tháng 3 2018

Gọi 30 số đó là a1; a2; a3;...;a30

Vì ƯCLN(a1; a2;...;a30) là d

=> đặt a1 = d.b1

     đặt a2 = d.b2

      ...

      đặt a3 = d.b3

=> d.b1 + d.b2 +...+ d.b30 = 1994

=> d(b1 + b2 +...+ b30) = 1994

=> 1994 chia hết cho d

=> d thuộc {1; 2; 997; 1994) (Vì d thuộc N*)  (1)

Mà b1; b2;...;b30 thuộc N* => b1 + b2 +...+ b30 > 30 

=> d < 1994/30 => d < 66    (2)

Từ (1) và (2) => d thuộc {1; 2}

Mà d là lớn nhất => d = 2

Vậy d = 2

Câu này có trong câu hỏi tương tự bạn chịu khó tìm bạn nhé :))

7 tháng 4 2017

a, Gọi A = 2 . 3 ... 2006

Các số A + 2; A + 3; ...; A + 2006 là 1000 số tự nhiên liên tiếp và rõ ràng đều là hợp số

(thông cảm nha, chỉ giải dc phần a thôi. Hihi)

29 tháng 12 2015

chtt nhé

29 tháng 12 2015

Gọi 30 số đó là a1; a2; a3;...;a30 (điều kiện...)

Theo bài ra, ta có:

a1 + a2 + a3 +...+ a30 = 1994  (1)

Vì ƯCLN(a1; a2; a3;...;a30) là d

=> đặt a1 = d.b

     đặt a2 = d.b2    (b1; b2; b3;...; b30 thuộc N*)

     đặt a3 = d.b3      ((b1; b2; b3;...;b30) = 1)

     ...

     đặt a30 = d.b30

Thay vào (1), ta có:

d.b1 + d.b2 + d.b3 +...+ d.b30 = 1994

d(b1 + b2 + b3 +...+ b30) = 1994

=> 1994 chia hết cho d

=> d thuộc Ư(1994)

=> d thuộc {1; 2; 997; 1994}  (2)

Mà b1; b2; b3;...;b30 thuộc N* => b1 + b2 + b3 +...+ b30 > 30

=> d < 1994/30  

=> d < 66    (3)

Từ (2) và (3) => d thuộc {1; 2}

Mà d lớn nhất

Từ 2 điều trên => d = 2

Vậy...

 

8 tháng 3 2016

hk pít nữa

2 tháng 8 2016

chiu luon

25 tháng 6 2017

a,

Gọi 3 số tự nhiên lt đó là a, a+1, a+2, ta có tổng chúng là:

a + a + 1 + a + 2 = 3a + 3 

Mà 3a \(⋮3;3⋮3\)

=> 3a + 3 \(⋮3\)

Vậy tổng ba số tự nhiên liên tiếp luôn chia hết cho 3

b, 

Gọi 4 số tn lt đó lần lượt là a, a+1, a+2, a+3, ta có tổng chúng là:ư

a + a + 1 + a + 2 + a + 3 = 4a + 6 = 4a + 4 + 2 

Mà \(4a⋮4;4⋮4\), 2 chia 4 dư 2 

Vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4 mà chia 4 dư 2

c, 

Gọi 2 số tự nhiên liên tiếp đó là a, a+11, ta có tích chúng là:

a[a + 1] 

*Nếu a chẵn thì đương nhiên a[a + 1] chia hết cho 2

* nếu a lẻ thì a + 1 sẽ chia hết cho 2 nên a[a + 1] chia hết cho 2

Vậy tích 2 số tự nhiên liên tiếp chia hết cho 2

d, 

Gọi 3 số tự nhiên liên tiếp là a,a+1, a+2, ta có tích chúng là:

a[a+1][a+2]

* cm a[a+1][a+2] chia hết cho 2

** nếu a lẻ thì a + 1 chia hết cho 2 => a[a+1][a+2] chia hết cho 2

** nếu a chẵn thì a và a+2 chia hết cho 2 => a[a+1][a+2] chia hết cho 2

Vậy a[a+1][a+2] chia hết cho 2

* cm a[a+1][a+2] chia hết cho 3

Ta có mọi số tự nhiên đều có dạng 3k, 3k+1 hoặc 3k + 2

** nếu a = 3k => a chia hết cho 3 => a[a+1][a+2] chia hết cho 3

** nếu a = 3k + 1 => a + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 => a[a+1][a+2] chia hết cho 3

** nếu a = 3k + 2 => a + 1 = 3k + 2 + 1 = 3k + 3 chia hết cho 3 => a[a+1][a+2] chia hết cho 3

Vậy a[a+1][a+2] chia hết cho 3

Kết luận: tích ba số tự nhiên liên tiếp chia hết cho 2 và 3

e, 

2 + 22 + 23 + 24 + ... + 260 

= 2[1 + 2 + 22 + 23 + 24 + ... + 260\(⋮2\)

2 + 22 + 23 + 24 + ... + 260 

= [2 + 22 + 23] + 24[2 + 22 + 23] + 28[2 + 22 + 23] + ... + 256[2 + 22 + 23]

= 14 + 24.14 +... + 256.14

= 7 . 2[1 + 24 + ... + 256\(⋮7\)

2 + 22 + 23 + 24 + ... + 260 

= [2 + 22 + 23 + 24] + 25[2 + 22 + 23 + 24] + ... +255[2 + 22 + 23 + 24

= 30 + 25.30 + ... + 255.30

= 5.6 + 25.5.6 + ... + 255.5.6

= 5[1.6 + 25.6 + ... + 255.6] \(⋮5\)

2 + 22 + 23 + 24 + ... + 260 

= [2 + 22 + 23 + 24] + 25[2 + 22 + 23 + 24] + ... +255[2 + 22 + 23 + 24

= 30 + 25.30 + ... + 255.30

= 15.2 + 25.15.2 + ... + 255.15.2

= 15[1.2 + 25.2 + ... + 255.2]\(⋮15\)

Vậy 2 + 22 + 23 + 24 + ... + 260 chia hết cho 2,5,7,15

g, 

102005 - 1 = 1000....000 - 1 [có 2005 chữ số 0]

               = 999.....9999 [2004 chữ số 9] 

Mà 999.....9999 \(⋮9\)[vì 9.2004 chia hết cho 9]

=> 102005 - 1 chia hết cho 9

Mà một số chia hết cho 9 sẽ chia hết cho 3 [VD: 9k = 3.3.k chia hết cho 3]

=> 102005 - 1 chia hết cho 3

Vậy 102005 - 1 chia hết cho 3 và 9

h, 

Ta có:

102005 + 2 = 102005 - 1 + 3

Mà 102005 - 1 chia hết cho 3 [chứng minh trên]

Lại có: 3 chia hết cho 3

=> 102005 + 2 chia hết cho 3

Mà 102005 + 2 = 9999....9 + 3 = 1000000000.....2 [2004 chữ số 0] có tổng các chữ số là:

1 + 0 + 0 + ... + 0 + 2 = 3 không chia hết cho 9

Vậy 102005 + 2 không chia hết cho 9 [mình nghĩ bạn ghi đề nhầm]

13 tháng 10 2018

Gọi 2 số tự nguyên liên tiếp là:  và  a+1

Tích của chúng là:  A  =  a(a+1)

  • Nếu:  a = 2k thì chia hết cho 2  
  • Nếu:  a = 2k+1 thì:  a+1 = 2k+2   chia hết cho 2  =>  A  chia hết cho 2

=>  đpcm