\(\sqrt[3]{3}\) bằng mấy?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a>0\\\sqrt{x-2}=b\ge0\\\sqrt{x+3}=c>0\end{matrix}\right.\)
\(\Leftrightarrow ab+c=b+ac\)
\(\Leftrightarrow a\left(b-c\right)-\left(b-c\right)=0\)
\(\Leftrightarrow\left(a-1\right)\left(b-c\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\b=c\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x-2}=\sqrt{x+3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\-2=3\left(vn\right)\end{matrix}\right.\)
1> Nua chu vi khu dat hinh chu nhat la:
280:2=140(m)
Goi chieu dai va chieu rong lan luot la x,y(x,y \(\varepsilon\)N)
Theo bai ra ta co : \(\frac{x}{4}=\frac{y}{3}\)va x+y=140
Ap dung tinh chat day ti so bang nhau ta co:
\(\frac{x}{4}=\frac{y}{3}=\frac{x+y}{4+3}=\frac{140}{7}=20\)
Tu \(\frac{x}{4}=20=>x=80\)
\(\frac{y}{3}=20=>y=60\)
Vaay chieu dai va chieu rong lan luot la 80,60
Dien h khu dat hinh chu nhat la
80.60=4800(\(m^2\))
D/s:4800m^2
Day la cach lam lop 7 nha boi vi ban hocj lop 7 nen mk giai theo cach lop7.
Nho k cho mk nhe
a) \(2\sqrt{9}+3\sqrt{16}+2\sqrt{49}\)
\(=2.3+3.4+2.7\)
\(=6+12+14\)
\(=32\)
b) \(4\sqrt{0,25}+2\sqrt{0,36}-2\sqrt{0,16}\)
\(=4.\sqrt{\frac{25}{100}}+2\sqrt{\frac{36}{100}}-2\sqrt{\frac{16}{100}}\)
\(=4.\frac{1}{2}+2.\frac{3}{5}-2.\frac{4}{25}\)
\(=2+\frac{6}{5}-\frac{8}{25}\)
\(=\frac{72}{25}\)
\(\sqrt{3-2\sqrt{2}}=\sqrt{\left(\sqrt{2}\right)^2-2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}-1\right)^2}=|\sqrt{2}-1|=\sqrt{2}-1\)
Tương tự \(\sqrt{4-2\sqrt{3}}=\sqrt{3}-1\); \(\sqrt{7-4\sqrt{3}}=2-\sqrt{3}\)
\(\Rightarrow BTT=\sqrt{2}-1+\sqrt{3}-1+2-\sqrt{3}=\sqrt{2}\)
\(\sqrt{3-2\sqrt{2}}+\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{2-2\sqrt{2}+1}+\sqrt{3-2\sqrt{3}+1}-\sqrt{4-4\sqrt{3}+3}\)
\(=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=\sqrt{2}-1+\sqrt{3}-1-2+\sqrt{3}\)
\(=2\sqrt{3}+\sqrt{2}-4\)
\(\sqrt{13+\sqrt{48}}=\sqrt{13+\sqrt{4.12}}=\sqrt{13+2\sqrt{12}}=\sqrt{\left(\sqrt{12}+1\right)^2}\)
\(=\sqrt{12}+1=2\sqrt{3}+1\)
\(\Rightarrow\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}-1\)
\(\Rightarrow\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{3+\sqrt{3}-1}=\sqrt{2+\sqrt{3}}\)
\(\Rightarrow\sqrt{\dfrac{4+2\sqrt{3}}{2}}=\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}\)
\(\Rightarrow2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}==2.\dfrac{\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}+\sqrt{2}\)
2) biến đổi khúc sau như câu 1:
\(\Rightarrow\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
1) Ta có: \(\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{5-\sqrt{13+\sqrt{4.12}}}=\sqrt{5-\sqrt{13+2\sqrt{12}}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{12}\right)^2+2.\sqrt{12}+1^2}}=\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}=\sqrt{5-\left|\sqrt{4.3}+1\right|}\)
\(=\sqrt{5-\left(2\sqrt{3}+1\right)}=\sqrt{5-2\sqrt{3}-1}=\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}=\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}-1\right|=\sqrt{3}-1\)
\(\Rightarrow2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=2\sqrt{3+\sqrt{3}-1}=2\sqrt{2+\sqrt{3}}\)
\(=2\sqrt{\dfrac{4+2\sqrt{3}}{2}}=2\sqrt{\dfrac{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}{2}}=2\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}\)
\(=2.\dfrac{\left|\sqrt{3}+1\right|}{\sqrt{2}}=\sqrt{2}\left(\sqrt{3}+1\right)=\sqrt{6}+\sqrt{2}\)
2) Ta có: \(\sqrt{5-\sqrt{13+\sqrt{48}}}=\sqrt{3}-1\) (như trên)
\(\Rightarrow\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.1+1^2}=\sqrt{\left(\sqrt{3}+1\right)^2}=\left|\sqrt{3}+1\right|=\sqrt{3}+1\)
3.
Đặt \(f\left(x\right)=x^4-3x^3+x-\dfrac{1}{8}\)
Hàm \(f\left(x\right)\) liên tục trên R
Do \(f\left(x\right)\) là đa thức bậc 4 nên có tối đa 4 nghiệm
Ta có: \(f\left(-1\right)=\dfrac{23}{8}>0\)
\(f\left(0\right)=-\dfrac{1}{8}< 0\Rightarrow f\left(-1\right).f\left(0\right)< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\)
\(f\left(\dfrac{1}{2}\right)=\dfrac{1}{16}>0\Rightarrow f\left(0\right).f\left(\dfrac{1}{2}\right)< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;\dfrac{1}{2}\right)\)
\(f\left(1\right)=-\dfrac{9}{8}< 0\Rightarrow f\left(\dfrac{1}{2}\right).f\left(1\right)< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(\dfrac{1}{2};1\right)\)
\(f\left(3\right)=\dfrac{23}{8}>0\Rightarrow f\left(1\right).f\left(3\right)< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(1;3\right)\)
Vậy pt có 4 nghiệm thuộc các khoảng nói trên
4.
\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{x^2+ax+2017}+x\right)=\lim\limits_{x\rightarrow-\infty}\dfrac{ax+2017}{\sqrt{x^2+ax+2017}-x}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{a+\dfrac{2017}{x}}{-\sqrt{1+\dfrac{a}{x}+\dfrac{2017}{x^2}}-1}=-\dfrac{a}{2}\)
\(\Rightarrow-\dfrac{a}{2}=6\Rightarrow a=-12\)
1) ĐKXĐ: \(x\ge5\)
2) ĐKXĐ: \(\left[{}\begin{matrix}x< -2\\x>2\end{matrix}\right.\)
5) ĐKXĐ: \(\left[{}\begin{matrix}x\le2\\x\ge3\end{matrix}\right.\)
kq = 1,44224957
Sinh ra máy tính làm gì nhỉ?
\(\sqrt[3]{3}=1,4422495\)