Hằng đẳng thức :x^2+x+1/4
27+8x^3
-x^3+3x^2-3x+1
8+36x+54x^2+27x^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(\dfrac{1}{2}x-1\right)^3=\left(-1-1\right)^3=\left(-2\right)^3=-8\)
\(C=\left(x+1\right)^3-1000\)
\(=100^3-1000=999000\)
\(D=27x^3+54x^2+36x+8-4\)
\(=\left(3x+2\right)^3-4=\left(-6+2\right)^3-4\)
\(=-64-4=-68\)
1) \(B=\dfrac{1}{8}x^3-\dfrac{3}{4}x^2+\dfrac{3}{2}x-1=\left(\dfrac{1}{2}x-1\right)^3\)
thay x =-2 vào B, ta được:
\(B=\left(\dfrac{1}{2}\cdot\left(-2\right)-1\right)^3=\left(-2\right)^3=-8\)
2) \(C=x^3+3x^2+3x-999=\left(x+1\right)^3-1000\)
thay x =99 vào B, ta được:
\(C=\left(99+1\right)^3-1000=999000\)
3) \(D=27x^3+54x^2+36x+4=\left(3x+2\right)^3-4\)
thay x =-2 vào D, ta được:
\(D=\left(3\left(-2\right)+2\right)^3-4=-68\)
Bài 1:
a: \(C=\left(x-3\right)\left(x+3\right)-\left(x+5\right)\left(x-1\right)\)
\(=x^2-9-\left(x^2+4x-5\right)\)
\(=x^2-9-x^2-4x+5=-4x-4\)
b: \(D=\left(3x-2\right)^2+2\left(x+1\right)\left(3x-2\right)+\left(x+1\right)^2\)
\(=\left(3x-2+x+1\right)^2=\left(4x-1\right)^2=16x^2-8x+1\)
a, x2-x+1/4=(x-1/2)2
b, (x+1)3
c,(2x+1)3
d, (2-3x03
e, (10x)2-(x2+25)2=:[10x+(x2+25)][10x-(x2+25)]=(10x+x2+25)(10x-x2-25)
a, \(\dfrac{27}{8x^3-1}:\dfrac{3}{2x-1}\)
\(=\dfrac{27}{\left(2x-1\right)\left(4x^2+2x+1\right)}.\dfrac{2x-1}{3}\)
\(=\dfrac{9}{4x^2+2x+1}\)
b, \(\dfrac{8x^3+36x^2+54x+27}{2x+3}=\dfrac{\left(2x+3\right)^3}{2x+3}=\left(2x+3\right)^2\)
a) \(-x^3+9x^2-27x+27=-\left(x^3-3.3.x^2+3.3^2.x-3^3\right)=-\left(x-3\right)^3\)
b)\(x^4-2x^3-x^2+2x+1=x^4+\left(-x\right)^2+\left(-1\right)^2+2x^2\left(-x\right)+2.\left(-x\right).\left(-1\right)+2x^2.\left(-1\right)\)
\(=\left(x^2-x-1\right)^2\)
c)\(8x^3+27y^3+36x^2y+54xy^2=\left(2x\right)^3+3.\left(2x\right)^2.3y+3.2x.\left(3y\right)^2+\left(3y\right)^3\)
\(=\left(2x+3y\right)^2\)
Một. Khai triển vế trái của phương trình:
(x-3)(x+3) = x(x+3) - 3(x+3) = x^2 + 3x - 3x - 9 = x^2 - 9
Khai triển vế phải của phương trình:
(x-5)^2 = (x-5)(x-5) = x(x-5) - 5(x-5) = x^2 - 5x - 5x + 25 = x^2 - 10x + 25
Đặt hai cạnh bằng nhau:
x^2 - 9 = x^2 - 10x + 25
Trừ x^2 từ cả hai phía:
-9 = -10x + 25
Trừ 25 từ cả hai vế:
-34 = -10 lần
Chia cả hai vế cho -10:
x = 3,4
b. Khai triển vế trái của phương trình:
(2x+1)^2 - 4x(x-1) = (2x+1)(2x+1) - 4x^2 + 4x = 4x^2 + 2x + 2x + 1 - 4x^2 + 4x = 8x + 1
Đặt vế trái bằng 17:
8x + 1 = 17
Trừ 1 cho cả hai vế:
8x = 16
Chia cả hai vế cho 8:
x = 2
c. Khai triển vế trái của phương trình:
(3x-2)(3x+2) - 9(x-1)x = (9x^2 - 4) - 9x^2 + 9x - 9x = -4 + 9x
Đặt vế trái bằng 0:
-4 + 9x = 0
Thêm 4 vào cả hai bên:
9x = 4
Chia cả hai vế cho 9:
x = 4/9
d. Khai triển vế trái của phương trình:
(3-x)^3 - (x+3)^3 = (27 - 9x + x^2) - (x^3 + 9x^2 + 27) = 27 - 9x + x^2 - x^3 - 9x^2 - 27 = -x^3 - 8x^2 - 9x
Đặt vế trái bằng 36x^2 - 54x:
-x^3 - 8x^2 - 9x = 36x^2 - 54x
Cộng x^3 + 8x^2 + 9x vào cả hai vế:
0 = 37x^2 - 63x
Chia cả hai vế cho x:
0 = 37x - 63
Thêm 63 vào cả hai bên:
63 = 37 lần
Chia cả hai vế cho 37:
x = 63/37
a: \(=\left(x+1+5\right)\left(x+1-5\right)=\left(x+6\right)\left(x-4\right)\)
b: =(1-2x)(1+2x)
c: \(=\left(2-3x\right)\left(4+6x+9x^2\right)\)
d: =(x+3)^3
e: \(=\left(2x-y\right)^3\)
f: =(x+2y)(x^2-2xy+4y^2)
\(x^2+x+\dfrac{1}{4}=\left(x+\dfrac{1}{4}\right)^2\)
\(8x^3+27=\left(2x+3\right)\left(4x^2-6x+9\right)\)
\(-x^3+3x^2-3x+1=\left(-x+1\right)^3\)