K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

\(\left(a-1\right)^2+\left(b-2\right)^2=5\Leftrightarrow2a+4b=a^2+b^2\)

\(\left(a-2\right)^2+\left(b-4\right)^2\ge0\Rightarrow a^2+b^2\ge4a+8b-20\)

\(\Rightarrow2a+4b\ge4a+8b-20\)

\(\Leftrightarrow a+2b\le10\)

3 tháng 8 2020

Bất đẳng thức cần chứng minh tương đương với \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge12\)

 Áp dụng bất đẳng thức AM-GM ta có  

\(1=a^2+b^2+c^2+2abc\ge4\sqrt[4]{2a^3b^3c^3}\)

\(\Rightarrow abc\le\frac{1}{8};\Rightarrow\text{​​}\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\sqrt[3]{\frac{1}{a^2b^2c^2}}\ge3\sqrt[3]{64}=12\)

suy ra điều phải chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

1 tháng 4 2017

áp dụng BĐT bunhia... ta có 

\(\left(a+2b\right)^2=\left(1.a+\sqrt{2}\sqrt{2}b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)\le3.3c^2=9c^2\)

\(\Rightarrow a+2b\le3c\)

áp dụng cosi ta có 

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{xyz}}=9\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

áp dụng BDT trên ta có \(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+b+b}=\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\left(đpcm\right)\)

dấu = xảy ra khi a=b=c

14 tháng 5 2017

1, hiển nhiên a+b>0 

có a^2+2ab+2b^2-2b=8=>(a+b)^2=8-(b^2-2b)=9-(b-1)^2 </ 9 => a+b </ 3