cho tam giác, các tia phân giác của góc A, B, C cắt nhau tại I. Qua I kẻ đường thẳng song song với BC cắt AB, AC lấn lượt tại M và N. cm MN=MB+NC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
Ta có: MN // BC
=> ^MIB = ^IBC ( so le trong )
Mà ^MBI = ^IBC ( BI phân giác )
=> ^MIB = ^ MBI
=> Tam giác MBI cân tại M
=> MB = MI
Lại có: MN // BC
=> ^NIC = ^ICB ( so le trong )
Mà ^ICN = ^ICB ( Do CI phân giác )
=> ^NIC = ^ICN
=> Tam giác INC cân tại N
=> IN = NC
Ta có: MN = MI + IN
Hay MN = MB + NC
Vậy MN = MB + NC ( đpcm )
a: Xét tứ giác BCOM có MO//BC
nên BCOM là hình thang
Xét tứ giác BCNO có NO//BC
nên BCNO là hình thang
b: MO//BC
=>\(\widehat{MOB}=\widehat{OBC}\)
=>\(\widehat{MOB}=\widehat{MBO}\)
=>MO=MB
NO//BC
=>\(\widehat{NOC}=\widehat{OCB}\)
=>\(\widehat{NOC}=\widehat{NCO}\)
=>NO=NC
MN=MO+NO
=>MN=MB+NC
Đáp án cần chọn là: D
Xét tứ giác DECB có: DE // BC (gt) nên tứ giác DECB là hình thang.
Tương tự:
Tứ giác DICB có DI // BC (gt) nên tứ giác DICB là hình thang.
Tứ giác IECB có IE // CB (gt) nên tứ giác IECB là hình thang.
Đáp án cần chọn là: B
Vì DE // BC (gt) nên suy ra D I B ^ = I B C ^ (so le trong)
Mà D I B ^ = I B C ^ (gt) nên D I B ^ = D B I ^
Suy ra tam giác BDI cân đỉnh D.
Do đó DI = DB (1)
Ta có: IE // CB nên suy ra E I C ^ = B C I ^ (so le trong)
Mà E I C ^ = B C I ^ (gt) nên E C I ^ = E I C ^
Suy ra tam giác EIC cân đỉnh E
Do đó EI = EC (2)
Cộng (1) và (2) vế theo vế ta được: DI + EI = BD + CE
=> DE = BD + CE
Đáp án cần chọn là: D
Xét tứ giác DECB có: DE // BC (gt) nên tứ giác DECB là hình thang.
Tương tự:
Tứ giác DICB có DI // BC (gt) nên tứ giác DICB là hình thang.
Tứ giác IECB có IE // CB (gt) nên tứ giác IECB là hình thang.
cũng muốn giúp nhưng mới lớp 6 thôi à