K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2020

+ Trường hợp 1:

Nếu \(x\ge2\)phương trình đã cho trở thành: \(\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=4\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=4\)

\(\Leftrightarrow x^4-5x^2=0\)

\(\Leftrightarrow x^2\left(x^2-5\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\left(l\right)\\x=\sqrt{5}\left(tm\right)\\x=-\sqrt{5}\end{cases}}\)(Dấu ngặc vuông nha)

+ Trường hợp 2:

Nếu \(x< 2:\)phương trình đã cho trở nhành:\(\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=-4\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=-4\)

\(\Leftrightarrow x^4-5x^2+8=0\left(vn\right)\)

Vậy phương trình có nghiệm là \(x=\sqrt{5}\)

28 tháng 1 2020

\(\left|x-2\right|\left(x-1\right)\left(x+1\right)\left(x+2\right)=0\)

+) Xét \(x\ge2\)

\(pt\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=4\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-1\right)=4\)

\(\Leftrightarrow x^4-4x^2-x^2+4=4\)

\(\Leftrightarrow x^4-5x^2=0\)

\(\Leftrightarrow x^2\left(x^2-5\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=\pm\sqrt{5}\end{cases}}\)

Chỉ thấy \(\sqrt{5}>\sqrt{4}=2\)nên \(\sqrt{5}\)là 1 nghiệm của pt đang xét.

+) Xét \(x< 2\)

\(pt\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=-4\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-1\right)=-4\)

\(\Leftrightarrow x^4-4x^2-x^2+4=-4\)

\(\Leftrightarrow x^4-5x^2+8=0\)(1)

Đặt \(x^2=t\left(t\ge0\right)\)

\(\left(1\right)\Leftrightarrow t^2-5t+8=0\)(2)

Mà \(t^2-5t+8=\left(t-\frac{5}{2}\right)^2+\frac{7}{4}>0\)

\(\Rightarrow\) (2) không xảy ra

Lúc đó pt đang xét vô nghiệm.

Vậy \(S=\left\{\sqrt{5}\right\}\)

NV
6 tháng 4 2021

Em coi lại đề bài, \(8\left(x+\dfrac{1}{x}\right)\) hay \(8\left(x+\dfrac{1}{x}\right)^2\) nhỉ?

 

\(ĐKXĐ:x\ne-1;x\ne-\frac{1}{2}\)

\(PT:\Leftrightarrow\frac{x^2-4x+1}{x+1}+1+\frac{x^2-5x+1}{2x+1}=0\)

\(\Leftrightarrow\frac{x^2-3x+2}{x+1}+\frac{x^2-3x+2}{2x+1}=0\)

\(\Leftrightarrow\left(x^2-3x+2\right)\left(\frac{1}{x+1}+\frac{1}{2x+1}\right)=0\)

\(\Leftrightarrow\left(x^2-3x+2\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(3x+2\right)=0\)

\(x-1=0\Leftrightarrow x=1\)

\(x-2=0\Leftrightarrow x=2\)

\(3x+2=0\Leftrightarrow3x=-2\Leftrightarrow x=-\frac{2}{3}\)

\(\Rightarrow\hept{\begin{cases}x=1\\x=2\\x=-\frac{2}{3}\end{cases}}\)

15 tháng 8 2019

\(\frac{x^2-4x+1}{x+1}+2=-\frac{x^2-5x+1}{2x+1}\)

\(\Leftrightarrow\left(x^2-4x+1\right)\left(x+1\right)+2\left(x+1\right)\left(2x+1\right)=-\left(x^2-5x+1\right)\left(x+1\right)\)

\(\Leftrightarrow2x^3-3x^2+4x+3=-x^3+4x^2+4x-1\)

\(\Leftrightarrow2x^3-3x^2+3+x^2-4x+1=0\)

\(\Leftrightarrow3x^2-7x^2+4=0\)

\(\Leftrightarrow\left(3x^2-4x-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(3x^2+2x-6x-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[x\left(3x+2\right)-2\left(3x+2\right)\right]\left(x-1\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x-2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}3x+2=0\\x-2=0\\x-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{2}{3}\\x=2\\x=1\end{cases}}\)

vậy:...

15 tháng 4 2022

bài 2 là dương nhé

Bài 2: 

a: Để \(\dfrac{4}{x+2}>0\) thì x+2>0

hay x>-2

b: Để \(\dfrac{3x+2}{-4}>0\) thì 3x+2<0

hay x<-2/3

22 tháng 3 2021

$pt⇔(x-2)^3-(x+1)^3+9x^2-1=0$

$⇔(x-2-x-1)^3+3.(x-2)(x+1)(x-2-x-1)+9x^2-1=0$

$⇔-27-9x^2+9x+18+9x^2-1=0$

$⇔9x=10$

$⇔x=\dfrac{10}{9}$

vậy hệ phương trình cho có tập nghiệm $S=\dfrac{10}{9}$

NV
20 tháng 8 2021

ĐKXĐ: \(\left[{}\begin{matrix}x< -1\\x>1\end{matrix}\right.\)

- Với \(x< -1\Rightarrow VT< 0< 2\sqrt{2}\Rightarrow\) ptvn

- Với \(x>1\), bình phương 2 vế:

\(x^2+\dfrac{x^2}{x^2-1}+\dfrac{2x^2}{\sqrt{x^2-1}}=8\)

\(\Leftrightarrow\dfrac{x^4}{x^2-1}+2\sqrt{\dfrac{x^4}{x^2-1}}-8=0\)

Đặt \(\sqrt{\dfrac{x^4}{x^2-1}}=t>0\)

\(\Rightarrow t^2+2t-8=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-4\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\dfrac{x^4}{x^2-1}=4\Rightarrow x^4-4x^2+4=0\)

\(\Rightarrow x^2=2\Rightarrow x=\sqrt{2}\)

22 tháng 11 2018

Không spam nha. Chương trình game xin tặng chương trình học online. Nhằm mục đích game được nhiều người chơi.

Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.

Link như sau vào google hoặc cốc cốc để tìm kiếm:

https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao

Copy cũng được nha

Bạn hack nick mình thu ib dưới vs nha giúp mk chuyện này

Bn

20 tháng 4 2021

\(\dfrac{x+1}{x-2}=\dfrac{1}{x^2-4}ĐK:x\ne\pm2\)

\(\Rightarrow\left(x+1\right)\left(x+2\right)=1\Leftrightarrow x^2+3x+2=1\)

\(\Leftrightarrow x^2+3x+1=0\)

=> Phương trình vô nghiệm 

20 tháng 4 2021

thật ra bài này vẫn có nghiệm nhưng nghiệm là số vô tỉ 

\(\Leftrightarrow x^2+3x+1=0\Leftrightarrow x^2+3x+\dfrac{9}{4}-\dfrac{5}{4}=0\)

\(\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2-\left(\dfrac{\sqrt{5}}{2}\right)^2=0\)nhưng lớp 8 mình chưa làm nên mình để pt vô nghiệm nhé 

NV
28 tháng 7 2021

\(4y^2=4x^4+4x^3+4x^2+4x+4\)

Ta có:

\(4x^4+4x^3+4x^2+4x+4=\left(2x^2+x\right)^2+\left(3x^2+4x+4\right)>\left(2x^2+x\right)^2\)

\(4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+2\right)^2-5x^2\le\left(2x^2+x+2\right)^2\)

\(\Rightarrow\left(2x^2+x\right)^2< \left(2y\right)^2\le\left(2x^2+x+2\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}\left(2y\right)^2=\left(2x^2+x+1\right)^2\\\left(2y\right)^2=\left(2x^2+x+2\right)^2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+1\right)^2\\4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+2\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-3=0\\5x^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=3\end{matrix}\right.\)

- Với \(x=-1\Rightarrow y^2=1\Rightarrow y=\pm1\)

- Với \(x=0\Rightarrow y^2=1\Rightarrow y=\pm1\)

- Với \(x=3\Rightarrow y^2=121\Rightarrow y=\pm11\)

NV
27 tháng 12 2020

ĐKXĐ: \(x\ge2\)

\(\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-1}+\sqrt{x+3}-\sqrt{\left(x-2\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}-1\right)-\sqrt{x+3}\left(\sqrt{x-2}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{x+3}\right)\left(\sqrt{x-2}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{x+3}\\\sqrt{x-2}=1\end{matrix}\right.\)

\(\Leftrightarrow x=3\)