Cho tam giác ABC nhọn có góc A bằng 60 độ. Các đường phân giác của góc B và góc C cắt nhau tại O và cắt AC, AB thứ tự tại E,D
a) Tính \(\widehat{BOC}\)
b) Chứng minh BE + CD = BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b/ Ta có góc BOC=120 độ
=> góc DOC=180-120=60 độ
Mà OP là tia phân giác góc BOC=>góc BOP=góc COP=60 độ
+góc DOC=góc EOB(đối đỉnh)
=> góc EOP=góc POB=60 độ
Xét tam giác BOA và tam giác BOP có:
góc EBO=góc PBO(phân giác góc B)
BO chung
Góc EOB=góc BOP(c/m trên)
=> tam giác BOE=tam giác BOP(g-c-g)
=> OE=OP(cạnh tương ứng) [1]
Xét tam giác DOC và tam giác POC có
POC=DOC=60 độ
OC chung
OCD=OCP(phân giác góc C)
=> tam giác DOC=tam giác POC(g-c-g)
=>OD=OP(cạnh tương ứng) [2]
Từ [1][2] suy ra OE=OP=OD
Từ chứng minh trên suy ra
BE=BP(cạnh tương ứng)
DC=PC(cạnh tương ứng)
=> BE+CD=BC
Phù mệt quá tik nha bà con
Hình học j mak chẳng có hình?
Nhưng thôi mk giải cho! Giải xong nhớ tik nhé!
Ta có góc A=60 độ
=> góc B+góc C=180-60=120 độ
Phân giác góc B cắt góc C tại O
=> góc BOC=180-(120/2)=120 độ
câu b từ từ nhé!
a: góc ABC+góc ACB=180-60=120 độ
=>góc OBC+góc OCB=60 độ
=>góc BOC=120 độ
b: góc EOB=góc DOC=180-120=60 độ
góc BOI=góc COI=120/2=60 độ
=>góc EOB=góc IOB
Xét ΔEOB và ΔIOB có
góc EOB=góc IOB
OB chung
góc OBE=góc OBI
=>ΔEOB=ΔIOB
=>OE=OI
Xét ΔOIC và ΔODC có
góc IOC=góc DOC
CO chung
góc ICO=góc DCO
=>ΔOIC=ΔODC
=>OI=OD
c: ΔBEO=ΔBIO
=>BE=BI
ΔOIC=ΔODC
=>CI=CD
BI+CI=BC
=>BE+CD=BC
a: góc ABC+góc ACB=180-60=120 độ
=>góc OBC+góc OCB=60 độ
=>góc BOC=120 độ
b: góc EOB=góc DOC=180-120=60 độ
góc BOI=góc COI=120/2=60 độ
=>góc EOB=góc IOB
Xét ΔEOB và ΔIOB có
góc EOB=góc IOB
OB chung
góc OBE=góc OBI
=>ΔEOB=ΔIOB
=>OE=OI
Xét ΔOIC và ΔODC có
góc IOC=góc DOC
CO chung
góc ICO=góc DCO
=>ΔOIC=ΔODC
=>OI=OD
c: ΔBEO=ΔBIO
=>BE=BI
ΔOIC=ΔODC
=>CI=CD
BI+CI=BC
=>BE+CD=BC
a: góc ABC+góc ACB=180-60=120 độ
=>góc OBC+góc OCB=60 độ
=>góc BOC=120 độ
b: góc EOB=góc DOC=180-120=60 độ
góc BOI=góc COI=120/2=60 độ
=>góc EOB=góc IOB
Xét ΔEOB và ΔIOB có
góc EOB=góc IOB
OB chung
góc OBE=góc OBI
=>ΔEOB=ΔIOB
=>OE=OI
Xét ΔOIC và ΔODC có
góc IOC=góc DOC
CO chung
góc ICO=góc DCO
=>ΔOIC=ΔODC
=>OI=OD
c: ΔBEO=ΔBIO
=>BE=BI
ΔOIC=ΔODC
=>CI=CD
BI+CI=BC
=>BE+CD=BC
a: \(\widehat{OBC}=\dfrac{\widehat{ABC}}{2}\)
\(\widehat{OCB}=\dfrac{\widehat{ACB}}{2}\)
Do đó: \(\widehat{OBC}+\widehat{OCB}=\dfrac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=\dfrac{1}{2}\cdot120^0=60^0\)
\(\Rightarrow\widehat{BOC}=180^0-60^0=120^0\)
Tham khảo
https://h.vn/hoi-dap/question/627412.html
Học tốt
sao k vào đc