K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2020

mọi người giúp em với ạ em đang cần gấp lắm .

27 tháng 1 2020

Đặt S = (-1) x ( -1)2x ....x (-1)2011

Ta có : S = ( -1 ) x ( -1)2x ....x (-1) 2011

                   = (-1)  x 1 x....x 1

                  = ( -1 ) 

Vậy S = (-1) 

( Vì (-1)2= 1  theo quy ước của máy tính nen tớ làm như trên!! Học tốt !!)

                      

10 tháng 5 2018

A =(1/2 +1)×(1/3 +1)×(1/4 +1)×....×(1/99 +1)

=3/2x4/3x...............x100/99

=2-1/99

=197/99

10 tháng 5 2018

A= \(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot.....\cdot\frac{100}{99}\)

A=\(\frac{\left(3\cdot4\cdot5\cdot....\cdot99\right)\cdot100}{2\cdot\left(3\cdot4\cdot5\cdot...\cdot99\right)}\)

A=\(\frac{100}{2}=50\)

\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\)

\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\)

=> \(\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)>\(\frac{32}{100}\)=32%

\(A=29\dfrac{1}{2}\cdot\dfrac{2}{3}+39\dfrac{1}{3}\cdot\dfrac{3}{4}+\dfrac{5}{6}\)

\(=\dfrac{59}{2}\cdot\dfrac{2}{3}+\dfrac{118}{3}\cdot\dfrac{3}{4}+\dfrac{5}{6}\)

\(=\dfrac{59}{3}+\dfrac{118}{4}+\dfrac{5}{6}\)

\(=\dfrac{59}{3}+\dfrac{59}{2}+\dfrac{5}{6}\)

\(=59\cdot\left(\dfrac{1}{3}+\dfrac{1}{2}\right)+\left(\dfrac{1}{3}+\dfrac{1}{2}\right)\)

\(=\dfrac{5}{6}\cdot\left(59+1\right)=\dfrac{5}{6}\cdot60=50\)

16 tháng 9 2021

\(A=\dfrac{2}{3}+\dfrac{-1}{3}=\dfrac{1}{3}\\ B=\dfrac{25}{11}\times\dfrac{13}{12}\times\dfrac{-11}{5}=\dfrac{5\times13\times\left(-1\right)}{1\times12\times1}=\dfrac{-65}{12}\\ C=\left(\dfrac{3}{4}-\dfrac{1}{5}\right)\times\left(\dfrac{2}{5}-\dfrac{4}{5}\right)=\dfrac{11}{20}\times\dfrac{-2}{5}=\dfrac{-11}{50}\)

\(B< -1< C< 0< A\\ \Leftrightarrow B< C< A\)

15 tháng 10 2017

\(P=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{xyz+xz+z}+\frac{xyz}{xyz^2+xyz+xz}+\frac{z}{xz+z+1}\)(do \(xyz=1\))

\(=\frac{xz}{xz+z+1}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)(do \(xyz=1\))

\(=\frac{xz+z+1}{xz+z+1}=1\)