K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2020

Theo giả thiết ta có: \(CF\perp AM\)nên \(\Delta MCF\)vuông tại F

Suy ra CF < MC (cạnh góc vuông bé hơn cạnh huyền) (1)

Tương tự ta có: BE < BM (2)

Từ (1) và (2) suy ra \(BE+CF< BM+MC=BC\)

Vậy \(BE+CF< BC\left(đpcm\right)\)

26 tháng 3 2021

ta có:

tam giác BEM vuông tại E \(\Rightarrow\) BM là cạnh lớn nhất trong tam giác BEM

\(\Rightarrow\):BM>BE

ta có: tam giác MFC vuông tại F suy ra MC là cạnh lớn nhất trong tam giác FMC

\(\Rightarrow\) CM>CF

từ 2 điều trên \(\Leftrightarrow\)

BM+CM>CF+BE

BC>CF+BE

26 tháng 12 2021

a: Xét tứ giác ANME có

\(\widehat{ANM}=\widehat{AEM}=\widehat{EAN}=90^0\)

Do đó: ANME là hình chữ nhật

Suy ra: AM=NE

a: Xét ΔAMB và ΔKMC có 

MA=MK

\(\widehat{AMB}=\widehat{KMC}\)

MB=MC

Do đó: ΔAMB=ΔKMC

b: Xét tứ giác BECF có 

BE//CF

BE=CF

Do đó: BECF là hình bình hành

Suy ra: BC và EF cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của FE

hay F,M,E thẳng hàng

10 tháng 9 2018

A B C N M E F G H I K

a) Kéo dài các tia AN; AE; AM; AF cho chúng cắt đường thẳng BC theo thứ tự tại các điểm G;H;I;K.

Xét \(\Delta\)ABI có: BM  là phân giác ^ABI và BM vuông góc AI (tại M) => \(\Delta\)ABI cân tại B

=> BM đồng thời là đường trung tuyến \(\Delta\)ABI => M là trung điểm AI

C/m tương tự, ta có: N;E;F lần lượt là trung điểm của AG;AH;AK

Xét \(\Delta\)GAH: N là trung điểm AG; E là trung điểm AH => NE là đường trung bình \(\Delta\)GAH

=> NE // GH hay NE // BC (1)

Tương tự: MF // BC (2);  NF // BC (3)

Từ (1); (2) và (3) => 4 điểm M;N;E;F thẳng hàng (Theo tiên đề Ơ-clit) (đpcm).

b) Theo câu a ta có: NF là đường trung bình \(\Delta\)AGK => \(NF=\frac{GK}{2}=\frac{BG+BC+CK}{2}\)(*)

Lại có: \(\Delta\)ABG cân ở B; \(\Delta\)ACK cân ở C (câu a) nên BG = AB; CK = AC

Thế vào (*) thì được: \(NF=\frac{AB+BC+AC}{2}\),

KL: ...

10 tháng 9 2019

A B C D E F

Mình nói trước là mình mới học dạng này nên không chắc đâu nhé! Nhất là cái dấu "=" ấy, nó rất khó để giải thích và có thể sai. Nếu bạn dùng geogebra thì sẽ dễ hiểu hơn.

Đặt BC = a = const (hằng số)

Xét trường hợp E và F không trùng D. Khi đó theo quan hệ giữa đường vuông góc và đường xiên thì:

BE + CF < BD + CD = BC (1)

Nếu E và F trùng D thì BE + CF = BC (2)

Từ (1) và (2) suy ra \(BE+CF\le BC=const\)

Đẳng thức xảy ra khi E và F trùng D khi đó D là trung điểm BC và tam giác ABC cân tại A.

11 tháng 9 2019

tth làm không đúng rồi.

Ta có E là hình chiếu của B lên AD 

F là hình chiếu của CAD

=> \(BC=BD+DC\ge BE+CF\)

Dấu "=" xảy ra khi và chỉ khi \(E\equiv D\equiv F\)

khi đó: \(BD\perp AD;CD\perp AD\)=> D là chân đường cao hạ từ A đến BC 

Vậy D là chân đường cao hạ từ A đến BC thì BE+CF đạt giá trị lớn nhất bằng BC

6 tháng 9 2017

 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0