K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2020

Đặt \(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{4026}\)

\(=1-\frac{1}{x+1}=\frac{2011}{4026}\)

\(\Rightarrow\)x+1=4026

x=4026-1

x=4025

Vậy x=4025.

21 tháng 1 2020

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)

=> \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)

=> \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{4026}\)

=> \(1-\frac{1}{x+1}=\frac{2011}{4026}\)

=> \(\frac{1}{x+1}=\frac{2015}{4026}\Rightarrow x+1=\frac{4026}{2015}\Rightarrow x=\frac{2011}{2015}\)

26 tháng 7 2020

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)

=> \(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)

=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{4026}\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)

=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}=\frac{1}{2013}\)

=> x + 1 = 2013 => x = 2012

26 tháng 7 2020

Trả lời:

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{x.\left(x+1\right)}=\frac{2011}{4026}\)

\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{x.\left(x+1\right)}=\frac{2011}{4026}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{4026}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2013}\)

\(\Leftrightarrow x+1=2013\)

\(\Leftrightarrow x=2012\)

Vậy \(x=2012\)

25 tháng 1 2017

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)

\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{4026}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2013}\)

\(\Rightarrow x+1=2013\)

\(\Rightarrow x=2012\)

Vậy x = 2012

7 tháng 8 2023

Bài 1:

a) \(\dfrac{9}{20}-\dfrac{8}{15}\times\dfrac{5}{12}\)

\(=\dfrac{9}{20}-\dfrac{2}{9}\)

\(=\dfrac{41}{180}\)

b) \(\dfrac{2}{3}\div\dfrac{4}{5}\div\dfrac{7}{12}\)

\(=\dfrac{2}{3}\times\dfrac{5}{4}\times\dfrac{12}{7}\)

\(=\dfrac{5}{6}\times\dfrac{12}{7}\)

\(=\dfrac{10}{7}\)

c) \(\dfrac{7}{9}\times\dfrac{1}{3}+\dfrac{7}{9}\times\dfrac{2}{3}\)

\(=\dfrac{7}{9}\times\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\)

\(=\dfrac{7}{9}\times1\)

\(=\dfrac{7}{9}\)

 

7 tháng 8 2023

Bài 2:

a) \(2\times\left(x-1\right)=4026\)

\(\left(x-1\right)=4026\div2\)

\(x-1=2013\)

\(x=2014\)

Vậy: \(x=2014\)

b) \(x\times3,7+6,3\times x=320\)

\(x\times\left(3,7+6,3\right)=320\)

\(x\times10=320\)

\(x=320\div10\)

\(x=32\)

Vậy: \(x=32\)

c) \(0,25\times3< 3< 1,02\)

\(\Leftrightarrow0,75< 3< 1,02\) ( S )

=> \(0,75< 1,02< 3\)

7 tháng 6 2018

Bài 3: 

= 1- 1/2 + 1/2 -1/3 +...+ 1/98 -1/99

= 1- 1/99

= 98/99

Bài 4:

= 1/2*3 + 1/3*4 + 1/4*5 +...+  1/10*11

= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 +...+ 1/10 - 1/11

= 1/2 - 1/11= 9/22

29 tháng 7 2015

=> \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{2010}{2011}\)

=> \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2010}{2011}\)

=>\(1-\frac{1}{x+1}=\frac{2010}{2011}\)

=> \(\frac{1}{x+1}=\frac{2011}{2011}-\frac{2010}{2011}=\frac{1}{2011}\)

=> x + 1 = 2011

=> x = 2010

17 tháng 10 2016

 Bài toán này ta có thể giải như sau:

1/3+1/6+1/10+...+1/X x (X +1) :2 =  2009/2011

Nhân hai vế với 1/2

Ta được

1/6 + 1/12 + 1/20 +...+1/ X x (X +1) = 2009/4022

1/ 2x3 +1/3x4 +1/4x5 +...+1/X x (X +1) = = 2009/4022

1/2 - 1/3 +1/3 -1/4 + 1/4 - 1/5 +...1/X - 1/(X +1)= = 2009/4022

1/2 -1/ (X + 1)  = 2009/4022

1/(X + 1) = 1/2 - 2009/4022

1/(X + 1)  = 1/2011

X = 2010

nhae