K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2016

A B C D E H I K K

BAC là góc ngoài của tam giác EAB nên BAC= E1+B1 (1)

Dễ dàng chứng minh được tam giác BAE=tam giác CAD (c.g.c) => CD= BE (2) (cặp cạnh tương ứng) và B1=C1 (cặp góc tương ứng) (3)

Tam giác AED có AE=AD (gt) nên AED là tam giác cân. Mà tam giác AED có H là trung điểm AE nên DH vuông góc AE <=> DH vuông góc EC.

Tam giác HDC vuông tại H có HK là đường trung tuyến => HK= 1/2 DC (4) (tính chất đường trung tuyến của tam giác vuông) => tam giác HKC cân tại K thì H1=C1 (5)

Tam giác EAB có HE=HA, AI=IB => IH là đường trung bình của tam giác, IH // =1/2 EB, E1= H2 (6)

Từ (1), (3), (5), (6) suy ra IHK= H2+H1=E1+C1=E1+B1=BAC=60 độ 

Từ  (2), (4) và (6) suy ra IH=HK 

Tam giác IHK có IHK=60 độ (cmt) và IH=HK nên là tam giác đều (đpcm)

10 tháng 9 2016

BAC là góc ngoài của tam giác EAB nên BAC= E1+B1 (1)

Dễ dàng chứng minh được tam giác BAE=tam giác CAD (c.g.c) => CD= BE (2) (cặp cạnh tương ứng) và B1=C1 (cặp góc tương ứng) (3)

Tam giác AED có AE=AD (gt) nên AED là tam giác cân. Mà tam giác AED có H là trung điểm AE nên DH vuông góc AE <=> DH vuông góc EC.

Tam giác HDC vuông tại H có HK là đường trung tuyến => HK= 1/2 DC (4) (tính chất đường trung tuyến của tam giác vuông) => tam giác HKC cân tại K thì H1=C1 (5)

Tam giác EAB có HE=HA, AI=IB => IH là đường trung bình của tam giác, IH // =1/2 EB, E1= H2 (6)

Từ (1), (3), (5), (6) suy ra IHK= H2+H1=E1+C1=E1+B1=BAC=60 độ 

Từ  (2), (4) và (6) suy ra IH=HK 

Tam giác IHK có IHK=60 độ (cmt) và IH=HK nên là tam giác đều (đpcm)

7 tháng 1 2016

cm tam giác AEM= tam giác ACN => góc EAM=gocsCAN (2 góc tương ứng )

rồi ta có góc DAE+DAN+CAN=180độ (do E,A,C thẳng hàng)

lại có     gócEAM=goscCAN=>DAE+DAN+EAM=180độ =>góc MAN là góc bẹt=> M,A,N thẳng hàng

7 tháng 1 2016

tam giác AEM làm sao bằng tam giác ACN được hả bạn

14 tháng 2 2020

bạn tham khảo link mà mk đưa cho nhé

 hoiap247.com/cau-hoi/82020 

nhớ k cho mk nhé

14 tháng 2 2020

Hình bạn tự vẽ nha :)

Xét \(\Delta ABE\) có : AE = AB => \(\Delta ABE\) cân tại A

=> \(\widehat{ABE}\) = \(\widehat{AEB}\)

\(\widehat{BAC}\) = \(\widehat{ABE}\) + \(\widehat{AEB}\) = \(2\widehat{ABE}\)

Xét  \(\Delta ADC\) có AD =  AC => \(\Delta ADC\) cân tại A

=> \(\Delta ADC\) = \(\Delta ACD\)

\(\widehat{BAC}\) = \(\widehat{ADC}\) + \(\widehat{ACD}\) = \(2\widehat{ADC}\)

Suy ra : \(\widehat{ABE}\) = \(\widehat{ADC}\) hay \(\widehat{DBE}\) = \(\widehat{BDC}\)

=> BE // CD

\(\Delta ABE\) cân tại A có M là trung điểm của BC nên AM \(\perp\)BE

\(\Delta ADC\) cân tại A có N là trung điểm của CD nên AN \(\perp\)CD

Do đó 3 điểm M , A , N thẳng hàng 

a: Xét ΔADM và ΔACM co

AD=AC

DM=CM

AM chung

=>ΔADM=ΔACM

b: Xét ΔAEN và ΔABN có

AE=AB

EN=BN

AN chung

=>ΔAEN=ΔABN