Cho tam giác đều ABC. Trên tia đối của AB lấy D. Trên tia đối của AC lấy điểm E sao cho AD=AE. Gọi M,N,P lần lượt là trung điểm AE,AB và CD. Cmr:MNP là tam giác đều
Các bạn giúp hộ mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BAC là góc ngoài của tam giác EAB nên BAC= E1+B1 (1)
Dễ dàng chứng minh được tam giác BAE=tam giác CAD (c.g.c) => CD= BE (2) (cặp cạnh tương ứng) và B1=C1 (cặp góc tương ứng) (3)
Tam giác AED có AE=AD (gt) nên AED là tam giác cân. Mà tam giác AED có H là trung điểm AE nên DH vuông góc AE <=> DH vuông góc EC.
Tam giác HDC vuông tại H có HK là đường trung tuyến => HK= 1/2 DC (4) (tính chất đường trung tuyến của tam giác vuông) => tam giác HKC cân tại K thì H1=C1 (5)
Tam giác EAB có HE=HA, AI=IB => IH là đường trung bình của tam giác, IH // =1/2 EB, E1= H2 (6)
Từ (1), (3), (5), (6) suy ra IHK= H2+H1=E1+C1=E1+B1=BAC=60 độ
Từ (2), (4) và (6) suy ra IH=HK
Tam giác IHK có IHK=60 độ (cmt) và IH=HK nên là tam giác đều (đpcm)
BAC là góc ngoài của tam giác EAB nên BAC= E1+B1 (1)
Dễ dàng chứng minh được tam giác BAE=tam giác CAD (c.g.c) => CD= BE (2) (cặp cạnh tương ứng) và B1=C1 (cặp góc tương ứng) (3)
Tam giác AED có AE=AD (gt) nên AED là tam giác cân. Mà tam giác AED có H là trung điểm AE nên DH vuông góc AE <=> DH vuông góc EC.
Tam giác HDC vuông tại H có HK là đường trung tuyến => HK= 1/2 DC (4) (tính chất đường trung tuyến của tam giác vuông) => tam giác HKC cân tại K thì H1=C1 (5)
Tam giác EAB có HE=HA, AI=IB => IH là đường trung bình của tam giác, IH // =1/2 EB, E1= H2 (6)
Từ (1), (3), (5), (6) suy ra IHK= H2+H1=E1+C1=E1+B1=BAC=60 độ
Từ (2), (4) và (6) suy ra IH=HK
Tam giác IHK có IHK=60 độ (cmt) và IH=HK nên là tam giác đều (đpcm)
cm tam giác AEM= tam giác ACN => góc EAM=gocsCAN (2 góc tương ứng )
rồi ta có góc DAE+DAN+CAN=180độ (do E,A,C thẳng hàng)
lại có gócEAM=goscCAN=>DAE+DAN+EAM=180độ =>góc MAN là góc bẹt=> M,A,N thẳng hàng
bạn tham khảo link mà mk đưa cho nhé
hoiap247.com/cau-hoi/82020
nhớ k cho mk nhé
Hình bạn tự vẽ nha :)
Xét \(\Delta ABE\) có : AE = AB => \(\Delta ABE\) cân tại A
=> \(\widehat{ABE}\) = \(\widehat{AEB}\)
\(\widehat{BAC}\) = \(\widehat{ABE}\) + \(\widehat{AEB}\) = \(2\widehat{ABE}\)
Xét \(\Delta ADC\) có AD = AC => \(\Delta ADC\) cân tại A
=> \(\Delta ADC\) = \(\Delta ACD\)
\(\widehat{BAC}\) = \(\widehat{ADC}\) + \(\widehat{ACD}\) = \(2\widehat{ADC}\)
Suy ra : \(\widehat{ABE}\) = \(\widehat{ADC}\) hay \(\widehat{DBE}\) = \(\widehat{BDC}\)
=> BE // CD
\(\Delta ABE\) cân tại A có M là trung điểm của BC nên AM \(\perp\)BE
\(\Delta ADC\) cân tại A có N là trung điểm của CD nên AN \(\perp\)CD
Do đó 3 điểm M , A , N thẳng hàng
a: Xét ΔADM và ΔACM co
AD=AC
DM=CM
AM chung
=>ΔADM=ΔACM
b: Xét ΔAEN và ΔABN có
AE=AB
EN=BN
AN chung
=>ΔAEN=ΔABN