\frac{a}{1+b^{2}c}+\frac{b}{1+c^{2}d}+\frac{c}{1+d^{2}a}+\frac{d}{1+a^{2}b}\geq 2$Ta có $\sum \frac{a}{1+b^2c}=\sum \frac{a^2}{a+ab^2c}$Áp dụng Cauchy-Schwarzt ta có $\sum \frac{a}{1+b^2c}=\sum \frac{a^2}{a+ab^2c}\geq \frac{(a+b+c+d)^2}{a+b+c+d+ab^2c+bc^2d+cd^2a+da^2b}=\frac{16}{4+ab^2c+bc^2d+cd^2a+da^2b}$Do đó ta chỉ cần chứng minh $ab^2c+bc^2d+cd^2a+da^2b\leq 4$ là suy ra $\sum \frac{a}{1+b^2c}\geq \frac{16}{4+4}=2$Bất đẳng thức đã cho tương...
Đọc tiếp
\frac{a}{1+b^{2}c}+\frac{b}{1+c^{2}d}+\frac{c}{1+d^{2}a}+\frac{d}{1+a^{2}b}\geq 2$
Ta có $\sum \frac{a}{1+b^2c}=\sum \frac{a^2}{a+ab^2c}$
Áp dụng Cauchy-Schwarzt ta có
$\sum \frac{a}{1+b^2c}=\sum \frac{a^2}{a+ab^2c}\geq \frac{(a+b+c+d)^2}{a+b+c+d+ab^2c+bc^2d+cd^2a+da^2b}=\frac{16}{4+ab^2c+bc^2d+cd^2a+da^2b}$
Do đó ta chỉ cần chứng minh $ab^2c+bc^2d+cd^2a+da^2b\leq 4$ là suy ra $\sum \frac{a}{1+b^2c}\geq \frac{16}{4+4}=2$
Bất đẳng thức đã cho tương đương $ab.bc+bc.cd+cd.da+da.ab\leq 4$ với $a+b+c+d=4$
Chuyển $\left ( ab,bc,cd,da \right )\Rightarrow (x,y,z,t)$
Ta có $x+y+z+t=ab+bc+cd+ad \leq \frac{(a+b+c+d)^2}{4}=4$
Lại có $ab^2c+bc^2d+cd^2a+da^2b=xy+yz+zt+tx \leq \frac{(x+y+z+t)^2}{4} \leq \frac{4^2}{4}=4$
Vậy ta có đpcm
Dấu = xảy ra khi $a=b=c=d=1$
doc lam sao
Lời giải:
Xét hiệu:
$a^4+b^4+c^2+1-2a(ab^2-a+c+1)=a^4+b^4+c^2+1-2a^2b^2+2a^2-2ac-2a$
$=(a^4+b^4-2a^2b^2)+(c^2+a^2-2ac)+(a^2-2a+1)$
$=(a^2-b^2)^2+(c-a)^2+(a-1)^2\geq 0$
$\Rightarrow a^4+b^4+c^2+1\geq 2a(ab^2-a+c+1)$
Ta có đpcm.
Dấu "=" xảy ra khi \(\left\{\begin{matrix} a^2=b^2\\ c=a\\ a=1\end{matrix}\right.\Leftrightarrow \pm b=a=c=1\)
\(VT-VP=\frac{\left(\sqrt{2}a^2-\sqrt{2}b^2+c+1-2a\right)^2}{4}+\frac{\left(\sqrt{2}a^2-\sqrt{2}b^2+2a-c-1\right)^2}{4}+\frac{\left(c-1\right)^2}{2}\ge0\)