K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2020

Phần b chứng minh góc EIR = góc EKR = 90 độ kiểu j vậy

10 tháng 12 2016

1.Dễ dàng chứng minh được: EHQ = EFM (cgc).

Suy ra dễ dàng tam giác EMQ vuông cân.

PEF = PQN (đồng vị) mà FEM = QEH.

Suy ra: PEN = PEF + FEM = EQH + QEH = 900.

Vậy tam giác PEN vuông (1).

2 . 

Thấy: NEQ = PEM (gcg) nên suy ra EN = EP (2).

Từ (1) và (2) suy ra:Tam giác PEN vuông cân.

2.Có: EIPN và  EKQM.

Vậy tứ giác EKRI có góc I và góc K vuông (4).

Lại có:

PQR = RPQ = 450 suy ra: PRQ = 900 (3).

Từ (3) và (4) suy ra tứ giác ẺIK là hình chữ nhật.

3.Dễ thấy QEKH và EFMK là các tứ giác nội tiếp.

Ta có:

EKH = 1800 - EQH (5).

Và: EKF = EMF =  EQH (6).

Từ (5) và (6) suy ra: EKH + EKF = 1800. Suy ra H,K,F thẳng hàng.

Lại có:

Tứ giác FEPI nội tiếp nên EFI = 1800-EPI = 1800-450 = 1350­­.

Suy ra: EFK +EFI = 450 + 1350 =1800.

Suy ra K,F,I thẳng hàng.

15 tháng 1 2019

câu 3 còn cách khác không dùng tứ giác nội tiếp ko

28 tháng 5 2017

Vẽ hình đi em làm cho !

18 tháng 11 2023

1: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>AH=DE

2: \(\widehat{EDM}=90^0\)

=>\(\widehat{EDH}+\widehat{MDH}=90^0\)

=>\(\widehat{EAH}+\widehat{MDH}=90^0\)

=>\(\widehat{MDH}+\widehat{HAC}=90^0\)

=>\(\widehat{MDH}+\widehat{ABC}=90^0\)

mà \(\widehat{MHD}+\widehat{MBD}=90^0\)

nên \(\widehat{MDH}=\widehat{MHD}\)

=>MD=MH

\(\widehat{MDH}+\widehat{MDB}=\widehat{HDB}=90^0\)

\(\widehat{MHD}+\widehat{MBD}=90^0\)(ΔHDB vuông tại D)

mà \(\widehat{MDH}=\widehat{MHD}\)

nên \(\widehat{MDB}=\widehat{MBD}\)

=>MD=MB

=>MB=MH

=>M là trung điểm của BH

\(\widehat{NED}=90^0\)

=>\(\widehat{NEH}+\widehat{DEH}=90^0\)

=>\(\widehat{NEH}+\widehat{DAH}=90^0\)

mà \(\widehat{DAH}=\widehat{C}\left(=90^0-\widehat{ABC}\right)\)

nên \(\widehat{NEH}+\widehat{C}=90^0\)

mà \(\widehat{NHE}+\widehat{C}=90^0\)(ΔHEC vuông tại E)

nên \(\widehat{NEH}=\widehat{NHE}\)

=>NE=NH

\(\widehat{NEH}+\widehat{NEC}=\widehat{CEH}=90^0\)

\(\widehat{NHE}+\widehat{NCE}=90^0\)(ΔCEH vuông tại E)

mà \(\widehat{NHE}=\widehat{NEH}\)

nên \(\widehat{NEC}=\widehat{NCE}\)

=>NE=NC

mà NH=NE

nên NC=NH

=>N là trung điểm của HC