Tìm gia trị của x, y thỏa mãn phương trình :\(\frac{36}{\sqrt{x-2}}+\frac{4}{\sqrt{y-1}}=28-4.\sqrt{x-2}-\sqrt{y-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{36}{\sqrt{x-2}}+\frac{4}{\sqrt{y-1}}=28-4\sqrt{x-2}-\sqrt{y-1}\)
Đk:\(\hept{\begin{cases}\sqrt{x-2}>0\left(\sqrt{x-2}\ne0\right)\\\sqrt{y-1}>0\left(\sqrt{y-1}\ne0\right)\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x-2>0\\y-1>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>2\\y>1\end{cases}}\)
\(pt\Leftrightarrow\frac{36}{\sqrt{x-2}}+\frac{4}{\sqrt{y-1}}+4\sqrt{x-2}+\sqrt{y-1}=28\)
Áp dụng BĐT AM-GM ta có:
\(\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}\ge2\sqrt{\frac{36}{\sqrt{x-2}}\cdot4\sqrt{x-2}}=24\)
\(\frac{4}{\sqrt{y-1}}+\sqrt{y-1}\ge2\sqrt{\frac{4}{\sqrt{y-1}}\cdot\sqrt{y-1}}=4\)
Cộng theo vế ta có: \(VT\ge VP=28\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x=11\\y=5\end{cases}}\) là nghiệm của pt
giải phương trình \(\frac{36}{\sqrt{x-2}}+\frac{4}{\sqrt{y-1}}=28-4\sqrt{x-2}-\sqrt{y-1}\)
giúp mk vs
<br class="Apple-interchange-newline"><div id="inner-editor"></div>x>2;y>1
Khi đó Pt ⇔36√x−2 +4√x−2+4√y−1 +√y−1=28
theo BĐT Cô si ta có 36√x−2 +4√x−2≥2.√36√x−2 .4√x−2=24
và 4√y−1 +√y−1≥2√4√y−1 .√y−1=4
Pt đã cho có VT>= 28 Dấu "=" xảy ra ⇔
36√x−2 =4√x−2⇔x=11
và 4√y−1 =√y−1⇔y=5
Đối chiếu với ĐK thì x=11; y=5 là nghiệm của PT
ĐKXĐ; ....
\(\Leftrightarrow\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}+\frac{4}{\sqrt{y-1}}+\sqrt{y-1}=28\)
Ta có:
\(VT\ge2\sqrt{\frac{36.4\sqrt{x-2}}{\sqrt{x-2}}}+2\sqrt{\frac{4\sqrt{y-1}}{\sqrt{y-1}}}=28\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\frac{36}{\sqrt{x-2}}=4\sqrt{x-2}\\\frac{4}{\sqrt{y-1}}=\sqrt{y-1}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=5\end{matrix}\right.\)
Vậy pt có cặp nghiệm duy nhất \(\left(x;y\right)=\left(11;5\right)\)
ĐK: \(x>2;y>1\)
pt \(\Leftrightarrow\)\(\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}+\frac{4}{\sqrt{y-1}}+\sqrt{y-1}=28\)
\(VT\ge2\sqrt{\frac{36}{\sqrt{x-2}}.4\sqrt{x-2}}+2\sqrt{\frac{4}{\sqrt{y-1}}.\sqrt{y-1}}=24+4=28=VP\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{36}{\sqrt{x-2}}=4\sqrt{x-2}\\\frac{4}{\sqrt{y-1}}=\sqrt{y-1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=11\\y=5\end{cases}}\) ( nhận )
\(P=\frac{3x-6\sqrt{x}+7}{2\sqrt{x}-2}+\frac{y-4\sqrt{x}+10}{\sqrt{y}-2}\)
\(=\frac{3\left(\sqrt{x}-1\right)}{2}+\frac{4}{2\left(\sqrt{x}-1\right)}+\left(\sqrt{y}-2\right)+\frac{6}{\sqrt{y-1}}\)
\(=\frac{3\left(\sqrt{x}-1\right)}{2}+\frac{3}{2\left(\sqrt{x}-1\right)}+\left(\sqrt{y}-2\right)+\frac{4}{\left(\sqrt{y}-2\right)}+\frac{4}{2\left(\sqrt{y}-2\right)}+\frac{1}{2\left(\sqrt{x}-1\right)}\)
\(\ge2.\sqrt{\frac{3}{2}.\frac{3}{2}}+2\sqrt{4}+\frac{\left(1+2\right)^2}{2\left(\sqrt{x}+\sqrt{y}-3\right)}\)
\(=3+4+\frac{3}{2}=\frac{17}{2}\)
Dấu "=" xảy ra <=> x = 4 và y = 16
ĐK: \(\hept{\begin{cases}x\ge2\\y\ge1\end{cases}}\)
pt <=> \(\left(\frac{36}{\sqrt{x-2}}+4\sqrt{x-2}\right)+\left(\frac{4}{\sqrt{y-1}}+\sqrt{y-1}\right)=28\)(1)
Áp dụng cô-si
VT \(\ge2\sqrt{\frac{36}{\sqrt{x-2}}.4\sqrt{x-2}}+2\sqrt{\frac{4}{\sqrt{y-1}}.\sqrt{y-1}}=28\)
(1) xảy ra <=> \(\hept{\begin{cases}\frac{36}{\sqrt{x-2}}=4\sqrt{x-2}\\\frac{4}{\sqrt{y-1}}=\sqrt{y-1}\end{cases}}\)
<=> x = 11 ; y = 5 ( tm )
Kết luận:...