K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2020

a Xem lại đề => Không làm được ý c

a, Gọi :

\(DB\cap AC=\left\{G\right\}\)

\(IE\cap SG=\left\{J\right\}\)

\(AJ\cap SC=\left\{H\right\}\)

\(\rightarrow\left(AIE\right)\cap\left(SBC\right)=HE\)

Chương 2: ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. QUAN HỆ SONG SONG

7 tháng 1 2020

a. Xem lại đề > không làm được c

b. Gọi \(DB\cap AC=G\)

\(IE\cap SG=J\)

\(AJ\cap SC=H\)

\(\rightarrow\left(AIE\right)=\left(SBC\right)=HE\)

21 tháng 12 2023

a: Chọn mp(ABCD) có chứa CD

Xét ΔSBD có

E,I lần lượt là trung điểm của SB,SD

=>EI là đường trung bình của ΔSBD

=>EI//BD

Xét (ABCD) và (AIE) có

\(A\in\left(ABCD\right)\cap\left(AIE\right)\)

EI//BD

Do đó: (ABCD) giao (AIE)=xy, xy đi qua A và xy//BD//EI

Gọi K là giao điểm của xy với CD

=>K là giao điểm của CD với mp(AIE)

21 tháng 12 2023

a: Chọn mp(ABCD) có chứa CD

Xét ΔSBD có

E,I lần lượt là trung điểm của SB,SD

=>EI là đường trung bình của ΔSBD

=>EI//BD

Xét (ABCD) và (AIE) có

 

EI//BD

Do đó: (ABCD) giao (AIE)=xy, xy đi qua A và xy//BD//EI

Gọi K là giao điểm của xy với CD

=>K là giao điểm của CD với mp(AIE)

a: \(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

\(D\in FS\subset\left(SFE\right)\)

\(B\in SE\subset\left(SFE\right)\)

Do đó: \(BD\subset\left(SFE\right)\)

Ta có: \(O\in BD\subset\left(SEF\right)\)

\(O\in AC\subset\left(ACD\right)\)

Do đó: \(O\in\left(SEF\right)\cap\left(ACD\right)\)

mà \(D\in\left(SEF\right)\cap\left(ACD\right)\)

nên \(\left(SEF\right)\cap\left(ACD\right)=DO\)

b: Xét ΔSDB có

E,F lần lượt là trung điểm của SB,SD

=>EF là đường trung bình của ΔSDB

=>EF//DB

Xét (ABCD) và (AEF) có

BD//EF

\(A\in\left(ABCD\right)\cap\left(AEF\right)\)

Do đó: (ABCD) giao (AEF)=xy, xy đi qua A và xy//BD//EF

 

8 tháng 12 2023

Cứu em câu c với ạ em không nhìn ra được giao điểm 

24 tháng 12 2021

24 tháng 12 2021

27 tháng 5 2019

Giải bài 9 trang 54 sgk Hình học 11 | Để học tốt Toán 11

a) Giao điểm M của CD và mp(C’AE).

Trong mp(ABCD), d cắt CD tại M, ta có:

+ M ∈ CD

+ M ∈ d ⊂ (C’AE) ⇒ M ∈ (C’AE)

Vậy M là giao điểm của CD và mp(C’AE).

b) + Trong mặt phẳng (SCD), gọi giao điểm của MC’ và SD là N.

N ∈ MC’ ⊂ (C’AE) ⇒ N ∈ (C’AE).

N ∈ SD ⊂ (SCD) ⇒ N ∈ (SCD)

⇒ N ∈ (C’AE) ∩ (SCD).

⇒ (C’AE) ∩ (SCD) = C’N.

+ (C’AE) ∩ (SCB) = C’E.

+ (C’AE) ∩ (SAD) = AN.

+ (C’AE) ∩ (ABCD) = AE

Vậy thiết diện của hình chóp cắt bởi mặt phẳng (C’AE) là tứ giác C’NAE