Tìm giá trị lớn nhất của \(\frac{a}{2a+b}+\frac{b}{2b+c}+\frac{c}{2c+a}\) với a,b,c>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2c+b}=\frac{a+b+c}{2b+c+2c+a+2c+b}\)\(=\frac{a+b+c}{3a+3b+3c}=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\)
Vậy ...
Dùng Cô-si ngược dấu:
Ta có : a\(1+b^2)=a-(ab^2/(1+b^2))>=a-(ab^2/2b)=...
Tương tự ta có:b/(1+c^2)>=b-bc/2
c/(1+a^2)>=c-ac/2
Cộng vế với vế ta có A>=(a+b+c)-(ab+bc+ca)/2
Mà 3(ab+bc+ca)<=a^2+b^2+c^2+2ab+2bc+2ca
<=>3(ab+bc+ca)<=(a+b+c)^2
<=>-(ab+bc+ca)>=-(a+b+c)^2/3
Thay vào ta có: A>=(a+b+c)-(a+b+c)^2/6=3/2
Dấu = xảy ra<=>a=b=c=1/3
P = \(\frac{a^2c}{a^2c+c^2b+b^2a+}+\frac{b^2a}{b^2a+a^2c+c^2b}+\frac{c^2b}{c^2b+b^2a+a^2c}\)
P = \(\frac{a^2c+b^2a+c^2b}{a^2c+c^2b+b^2a}=1\)
\(P=\frac{\frac{a}{b}}{\frac{a}{b}+\frac{c}{a}+\frac{b}{c}}+\frac{\frac{b}{c}}{\frac{b}{c}+\frac{a}{b}+\frac{c}{a}}+\frac{\frac{c}{a}}{\frac{c}{a}+\frac{b}{c}+\frac{a}{b}}=\frac{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}=1\)
Áp dụng BĐT Cauchy - Schwarz và BĐT phụ \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
\(\Rightarrow M^2=\left(\sqrt{\frac{a}{b+c+2a}}+\sqrt{\frac{b}{c+a+2b}}+\sqrt{\frac{c}{a+b+2c}}\right)^2\)
\(\le\left(1+1+1\right)\left(\frac{a}{b+c+2a}+\frac{b}{c+a+2b}+\frac{c}{a+b+2c}\right)\)
\(\le\frac{3}{4}\left(\frac{a}{b+a}+\frac{a}{c+a}+\frac{b}{b+c}+\frac{b}{b+a}+\frac{c}{c+a}+\frac{c}{c+b}\right)\)
\(=\frac{3}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{9}{4}\)
\(\Rightarrow M\le\frac{3}{2}\)
Dấu "= " xảy ra \(\Leftrightarrow a=b=c\)
Áp dụng bất đẳng thức \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) ta có :
\(\frac{ab}{a+3b+2c}=\frac{ab}{9}\cdot\frac{9}{a+3b+2c}=\frac{ab}{9}\cdot\frac{9}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}\cdot\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
\(=\frac{1}{9}\cdot\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{ab}{2b}\right)=\frac{1}{9}\cdot\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)
Từ đó suy ra \(A\le\frac{1}{9}\cdot\Sigma\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)=\frac{1}{9}\cdot\left(a+b+c+\frac{a+b+c}{2}\right)\)
\(=\frac{1}{9}\cdot\frac{3\left(a+b+c\right)}{2}=\frac{1}{9}\cdot\frac{3\cdot6}{2}=1\)
Vậy \(maxA=1\Leftrightarrow a=b=c=2\)
Từ 2a+2b+2c=3abc chia cả hai vế cho abc>0 ta được
\(2\left(\frac{1}{bc}+\frac{1}{ac}+\frac{1}{ab}\right)=3=>\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{3}{2}\)
\(P=\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}-2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
Ta có
Ta có :
\(\left(x-y\right)^2\ge0\Rightarrow x^2+y^2\ge2xy\Rightarrow\left(x+y\right)^2\ge4xy\)
\(\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{x+y}{xy}\right)=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Áp dụng BĐT trên ta có :
\(A=\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\)
\(\Rightarrow A=\frac{a}{\left(a+b\right)+\left(a+c\right)}+\frac{b}{\left(a+b\right)+\left(b+c\right)}+\frac{c}{\left(c+a\right)+\left(b+c\right)}\)
\(\Rightarrow A\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)+\frac{1}{4}\left(\frac{b}{a+b}+\frac{b}{b+c}\right)\)
\(+\frac{1}{4}\left(\frac{c}{c+a}+\frac{c}{b+c}\right)\)
\(\Rightarrow A\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{b+c}\right)\)
\(\Rightarrow A\le\frac{1}{4}\left(\left(\frac{a}{a+b}+\frac{b}{a+b}\right)+\left(\frac{a}{a+c}+\frac{c}{a+c}\right)+\left(\frac{b}{b+c}+\frac{c}{b+c}\right)\right)\)
\(\Rightarrow A\le\frac{1}{4}\left(1+1+1\right)\)
\(\Rightarrow A\le\frac{3}{4}\)
Dấu " = " xảy ra khi a=b=c
Ta có: \(A=\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\)
\(=\frac{a}{\left(a+b\right)+\left(a+c\right)}+\frac{b}{\left(a+b\right)+\left(b+c\right)}+\frac{c}{\left(a+c\right)+\left(b+c\right)}\)
\(\le\frac{a}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{b}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)+\frac{c}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)
\(=\frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{a+c}{a+c}\right)=\frac{3}{4}\)
Dấu "=" xảy ra <=> a = b = c
Vậy max A = 3/4 đạt tại a= b = c .