Xác định giá trị âm của m để hệ phương trình:
\(\hept{\begin{cases}x^2y+m=y^3+xy\\xy^2+m^3=x^3+yx\end{cases}}\)có nghiệm duy nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}\Rightarrow S^2\ge4P}\) , ta có:
\(\hept{\begin{cases}S+P=a+1\\SP=a\end{cases}}\) nên để hệ có nghiệm duy nhất thì
\(\left(a+1\right)^2\ge4a\) \(\Leftrightarrow\) \(a=1\)
Lấy pt dưới trừ đi pt trên được \(x=m+1\)
Thế vào pt trên được: \(m\left(m+1\right)-2y=m^2-m+6\) hay \(y=m-3\)
Ta có \(2x-y+3=0\) nghĩa là \(2\left(m+1\right)-\left(m-3\right)+3=0\).
Tự giải nha bạn. Đáp số là \(m=-8\) đó.
1:
a)\(\hept{\begin{cases}nx+x=5
\\x+y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x.\left(n+1\right)=5\left(1\right)\\x+y=1\end{cases}}\)