K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2020

tìm x nha

17 tháng 8 2016

 

  

 

3 tháng 3 2020

a,

đoạn 9x-6-> 2x-6=0

=> x=3

b,6x^2+13x+5=6x^2-20x+6

33x=1

=>x=1/33

3 tháng 3 2020

a) (x+1)(x+9)=(x+3)(x+5) 

<=>x^2+10x+9=x^2+8x+15

<=>x^2+10x+9-x^2-8x-15=0

<=>9x-6=0 phải là 2x - 6

<=>9x=6

<=>x=6/9=2/3 => S= 2/3

d) (3x+5)(2x+1)=(6x-2)(x-3)

<=>6x^2+13x+5=6x^2-16x+6 phải là 6x^2 - 20x + 6

<=>6x^2+13x+5-6x^2+16x-6=0

<=>29x-1=0

<=>29x=1

<=>x=1/29

13 tháng 2 2016

a) x+ 4x- 29x + 24                                                           

= x3 - 3x2 + 7x2 - 21x - 8x + 24

= x2(x-3) + 7x(x-3) - 8(x-3)

= (x-3)(x2+7x-8)

=(x-3)(x2+8x-x-8)

= (x-3)[(x2+8x)-(x+8)]

= (x-3)[x(x+8)-(x+8)]

= (x-3)(x+8)(x-1)

28 tháng 6 2017

Câu 1:

\(A=x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)

\(A=x^3+x^2+x-x^3-x^2-x+5\)

\(A=5\)

         Vậy GT A ko phụ thuộc vào biến

B đề sai

Còn câu 2 mk ko hiêu g hết

18 tháng 6 2018

A = x^3+x^2+x - x^3-x^2-x+5

A= ( x^3-x^3 ) + ( x^2 - x^2)+ ( x -x ) +5

A=0+0+0+5

A=5

Vậy giá trị của biểu thức bằng 5 không phụ thuộc vào giá trị của x .

             Biểu thức B , làm tương tự nhé !!!

21 tháng 5 2017

x^2*(x-30)-31x+1

thay x=31 vao bieu thuc 

(31)^2*(31-30)-31*31+1=1

29 tháng 6 2016

1. \(< =>\left(6x^2+31x+18\right)-\left(6x^2+13x+2\right)=x+1-a+6\)

      \(< =>6x^2+31x+18-6x^2-13x-2=7\)

       \(< =>18x+16=7\)

        \(< =>18x=7-16\)

           \(< =>18x=-9\)

           \(< =>x=-\frac{9}{18}=-\frac{1}{2}\)

29 tháng 6 2016

2. vì x=14 nên x+1=15 ; x+2 = 16;    2x + 1 =29;   x-1=13

thay  vào A ta được

\(A=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)

\(A=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)

\(A=-x=-14\)

21 tháng 7 2017

a) \(x^3+4x^2-29x+24=x^3-x^2+5x^2-5x-24x+24\)

\(=x^2\left(x-1\right)+5x\left(x-1\right)-24\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+5x-24\right)\)

\(=\left(x-1\right)\left(x^2+8x-3x-24\right)\)

\(=\left(x-1\right)\left[x\left(x+8\right)-3\left(x+8\right)\right]\)

\(=\left(x-1\right)\left(x+8\right)\left(x-3\right)\)

b) \(x^4+6x^3+7x^2-6x+1\)

\(=x^4+\left(6x^3-2x^2\right)+\left(9x^2-6x+1\right)\)

\(=x^4+2x^2\left(3x-1\right)+\left(3x-1\right)^2\)

\(=\left(x^2+3x-1\right)^2\)

c) \(\left(x^2-x+2\right)^2+\left(x-2\right)^2=x^4-2x^3+6x^2-8x+8\)

\(=\left(x^4-2x^3+2x^2\right)+\left(4x^2-8x+8\right)\)

\(=x^2\left(x^2-2x+2\right)+4\left(x^2-2x+2\right)\)

\(=\left(x^2-2x+2\right)\left(x^2+4\right)\)

d) Phức tạp mà dài quá :v

\(6x^5+15x^4+20x^3+15x^2+6x+1\)

\(=6x^5+3x^4+12x^4+6x^3+14x^3+7x^2+8x^2+4x+2x+1\)

\(=3x^4\left(2x+1\right)+6x^3\left(2x+1\right)+7x^2\left(2x+1\right)+4x\left(2x+1\right)+\left(2x+1\right)\)

\(=\left(2x+1\right)\left(3x^4+6x^3+7x^2+4x+1\right)\)

\(=\left(2x+1\right)\left[\left(3x^4+3x^3+x^2\right)+\left(3x^3+3x^2+x\right)+\left(3x^2+3x+1\right)\right]\)

\(=\left(2x+1\right)\left[x^2\left(3x^2+3x+1\right)+x\left(3x^2+3x+1\right)+\left(3x^2+3x+1\right)\right]\)

\(=\left(2x+1\right)\left(3x^2+3x+1\right)\left(x^2+x+1\right)\)

e)

- Câu này có thể áp dụng định lý: nếu tổng các hệ số biến bậc chẵn và tổng các hệ số biến bậc lẻ bằng nhau thì đa thức có nhân tử x + 1.

- Nhận thấy: 1 + 4 + 4 + 1 = 3 + 4 + 3

\(x^6+3x^5+4x^4+4x^3+4x^2+3x+1\)

\(=(x^6+x^5)+(2x^5+2x^4)+(2x^4+2x^3)+(2x^3+2x^2)+(2x^2+2x)+(x+1)\)

\(=x^5(x+1)+2x^4(x+1)+2x^3(x+1)+2x^2(x+1)+2x(x+1)+(x+1)\)

\(=(x+1)(x^5+2x^4+2x^3+2x^2+2x+1)\)

Tiếp tục phân tích bằng cách trên vì 1 + 2 + 2 = 2 + 2 +1

\(=\left(x+1\right)\left(x+1\right)\left(x^4+x^3+x^2+x+1\right)\)

\(=\left(x+1\right)^2\left(x^4+x^3+x^2+x+1\right)\)

11 tháng 10 2017

a) Gọi CT ghi hóa trị của NH3\(N^xH^I_3\) (x: nguyên, dương)

Theo quy tắc hóa trị, ta có:

\(x.1=I.3\\ =>x=\dfrac{1.I}{3}=III\)

Vậy: Hóa trị của N có hóa trị III trong hợp chất NH3

b) Gọi CT kèm hóa trị của Zn(OH)2\(Zn^x\left(OH\right)^y_2\) (x,y: nguyên, dương).

Theo quy tắc hóa trị, ta có:

\(x.1=y.2\\ =>\dfrac{x}{y}=\dfrac{2}{1}=\dfrac{II}{I}\)

=> x=II

y=I

=> Hóa trị của Zn là II trong hợp chất trên

AH
Akai Haruma
Giáo viên
10 tháng 10 2018

1)

\(15x^3+29x^2-8x-12=(15x^3+30x^2)-(x^2+2x)-(6x+12)\)

\(=15x^2(x+2)-x(x+2)-6(x+2)\)

\(=(x+2)(15x^2-x-6)=(x+2)(15x^2-10x+9x-6)\)

\(=(x+2)[5x(3x-2)+3(3x-2)]\)

\(=(x+2)(3x-2)(5x+3)\)

AH
Akai Haruma
Giáo viên
10 tháng 10 2018

2)

\(x^3+4x^2-29x+24=(x^3-x^2)+(5x^2-5x)-(24x-24)\)

\(=x^2(x-1)+5x(x-1)-24(x-1)\)

\(=(x-1)(x^2+5x-24)\)

\(=(x-1)(x^2-3x+8x-24)\)

\(=(x-1)[x(x-3)+8(x-3)]=(x-1)(x-3)(x+8)\)