- Cho tam giác ABC có trọng tâm G và M là 1 điểm bất kì .Chứng minh rằng MA2 +MB2 +MC2\(\ge\)MA.GA+MB.GB+MC.GC\(\ge\)GA2+GB2+GC2
- Cho tam giác ABC .Chứng minh rằng 3( MA2+MB2+MC2)\(\ge\)AB2+BC2+CA2
Giups mình với ạ ,mình cảm ơn nhiều ạ !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2=GA^2+GB^2+GC^2+12AB^2\)
\(\Leftrightarrow3MG^2+2\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)=12AB^2\)
\(\Leftrightarrow MG^2=4AB^2\Leftrightarrow MG=2AB\)
Quỹ tích M là đường tròn tâm G bán kính \(R=2AB\)
Đáp án C.
Gắn hệ trục tọa độ Oxyz, với O(0;0;0) là trung điểm của AB => OC= 3
Khi đó
⇒ x 2 + ( y + 1 ) 2 + z 2 + x 2 + ( y - 1 ) 2 + z 2 + 2 ( x - 3 ) 2 + 2 y 2 + 2 z 2 = 12
Vậy tập hợp các điểm M là một mặt cầu có bán kính
R
=
7
2
a) Gọi O là tâm đường tròn ngoại tiếp. Do tam giác ABC là tam giác đều nên O đồng thời là trọng tâm tam giác đều ABC.
Lại có:
+ O là trọng tâm tam giác nên
+ Bán kính đường tròn ngoại tiếp tam giác:
Ta có: NA2 + NB2 + NC2 ngắn nhất
⇔ NO2 ngắn nhất vì R không đổi
⇔ NO ngắn nhất
⇔ N là hình chiếu của O trên d.
a, Gọi I là trọng tâm của ΔABC
⇒ \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\)
MA2 + MB2 + MC2 = k2
⇔ 3MI2 + 2\(\overrightarrow{MI}\left(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}\right)+AB^2+AC^2+BC^2\) = k2
⇔ 3MI2 = k2 - 1014
⇔ MI = \(\sqrt{\dfrac{k-1014}{3}}\) = const
Vậy M thuộc \(\left(I;\sqrt{\dfrac{k-1014}{3}}\right)\)
Chọn A
Gọi là trọng tâm tam giác ABC. Suy ra: G(2;-2;2)
Do tổng GA2 + GB2 + GC2 không đổi nên MA2 + MB2 + MC2 đạt giá trị nhỏ nhất khi và chỉ khi GM2 nhỏ nhất
Mà S nằm trên mặt phẳng (Oyz) nên M là hình chiếu vuông góc của G lên mặt phẳng (Oyz). Suy ra: M(0;-2;2)
Vậy P = x+y+z = 0 + (-2) + 2 = 0