K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2017

Chọn D.

Ta có:

Vậy  sin C = cosA + cos B khi và chỉ khi

Hay 

Nên c2[(a + b) 2 - c2]= (a + b)2[ c2 - (a - b)2]

Do đó; c4 = (a2 - b2) 2

Suy ra a2 = b2 + c2 hoặc b2 = c2 + a2

Suy ra; tam giác ABC vuông tại A hoặc B.

 

loading...  loading...  loading...  

27 tháng 4 2021

TL:

sinA+sinB+sinC=1-cosA+cosB+cosC => Tam giác ABC Vuông tại A

27 tháng 4 2021

Vế trái = sinA + sinB + sinC

= 2sin(A + B)/2.cos(A - B)/2 + 2sinC/2.cosC/2

= 2cosC/2.cos(A - B)/2 + 2sinC/2.cosC/2

= 2cosC/2[cos(A - B)/2 + sinC/2]

=2.cosC/2.[cos(A - B)/2 + cos(A + B)/2]

= 4.cosC/2.cosB/2.cosA/2

Vế phải = 1 - cosA + cosB + cosC

= 2sin²A/2 + 2cos(B + C)/2.cos(B - C)/2

= 2.sinA/2[sinA/2 + cos(B - C)/2] (vì cos(B + C)/2 = sinA/2)

= 2.sinA/2[cos(B + C)/2 + cos(B - C)/2

= 4.sinA/2.cosB/2.cosC/2

Vậy sinA + sinB + sinC = 1 - cosA + cosB + cosC

<=> cosA/2.cosB/2.cosC/2 = sinA/2.cosB/2.cosC/2

<=> cosB/2.cosC/2(sinA/2 - cosA/2) = 0

mà cosB/2 ≠ 0 và cosC/2 ≠ 0

=> sinA/2 = cosA/2

<=> A/2 = 45o

<=> A = 90o

tam giác ABC vuông tại A

NV
6 tháng 5 2019

\(2sinB.sinC=1+cosA\Leftrightarrow cos\left(B-C\right)-cos\left(B+C\right)=1+cosA\)

\(\Leftrightarrow cos\left(B-C\right)+cosA=1+cosA\)

\(\Leftrightarrow cos\left(B-C\right)=1\)

\(\Rightarrow B-C=0\Rightarrow B=C\)

\(sinA=\frac{cosA+cosB}{sinB+sinC}=\frac{cosA+cosB}{2sinB}\) (do \(B=C\))

\(\Leftrightarrow2sinA.sinB=cosA+cosB\)

\(\Leftrightarrow cos\left(A-B\right)-cos\left(A+B\right)=cosA+cosB\)

\(\Leftrightarrow cos\left(A-B\right)+cosC=cosA+cosB\)

\(\Leftrightarrow cos\left(A-B\right)+cosB=cosA+cosB\)

\(\Leftrightarrow cos\left(A-B\right)=cosB\)

\(\Rightarrow A-B=B\Rightarrow A=2B=B+C\)

\(A+B+C=180^0\Rightarrow2A=180^0\Rightarrow A=90^0\)

\(\Rightarrow\Delta ABC\) vuông cân tại A

1 tháng 7 2018

Không mất tính tổng quát giả sử: \(A\ge B\ge C\)

=> \(tanA\ge tanB\ge tanC;cosA\le cosB\le cosC\)

Áp dụng BĐT Chebyshev ta có:

\(\left(\dfrac{tanA+tanB+tanC}{3}\right)\left(\dfrac{cosA+cosB+cosC}{3}\right)\ge\dfrac{tanA\cdot cosA+tanB\cdot cosB+tanC\cdot cosC}{3}\)

=> \(\dfrac{sinA+sinB+sinC}{cosA+cosB+cosC}\le\dfrac{tanA+tanB+tanC}{3}\)

mặt khác ta có: \(tanA+tanB+tanC=tanA\cdot tanB\cdot tanC\)

=> \(\dfrac{sinA+sinB+sinC}{cosA+cosB+cosC}\le\dfrac{tanA\cdot tanB\cdot tanC}{3}\left(đpcm\right)\)

đẳng thức xảy ra khi tam giác ABC đều

2 tháng 7 2018

Đề sai.

\(tan90^o=\dfrac{1}{0}\) (không thể chia cho không) nên đề bài sai với trường hợp tam giác vuông rồi.