CHo hình vẽ sau biết : Hình BPQI là hình thang điểm chính giữa cạnh AC
a) Tính diện tích hình tam giác BPO biết rằng diện tích hình tam giác OQI là 3cm2
b)So sánh diện tích tam giác IPC với diện tích hình AIPB
mình đang cần gấp nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\) Ta có \(BH=HC=AE=EB=\dfrac{1}{2}AB=\dfrac{1}{2}BC=\dfrac{1}{2}\cdot10=5\left(cm\right)\)
\(S_{BHDA}=S_{ABCD}-S_{CHD}=AD^2-\dfrac{1}{2}CD\cdot CH\\ =100-\dfrac{1}{2}\cdot10\cdot5=75\left(cm^2\right)\)
\(b,S_{AHD}=S_{BHDA}-S_{AHB}=75-\dfrac{1}{2}\cdot10\cdot5=50\left(cm^2\right)\\ S_{AHE}=S_{AHB}-S_{HBE}=25-\dfrac{1}{2}\cdot5\cdot5=\dfrac{25}{2}\left(cm^2\right)\\ \Rightarrow S_{AHD}>S_{AHE}\)
a: \(S_{BNDA}=\dfrac{1}{2}\cdot\left(BN+AD\right)\cdot AB=\dfrac{1}{2}\cdot20\cdot\left(10+20\right)=30\cdot10=300\left(cm^2\right)\)
b: Xét ΔMAD vuông tại A và ΔNBA vuông tại B có
MA=NB
AD=BA
=>ΔMAD=ΔNBA
=>góc AMD=góc BNA
=>góc DAN+góc ADM=90 độ
=>DM vuông góc AN
Vì AM<AD nên MO<DO
\(S_{ADN}=\dfrac{1}{2}\cdot DO\cdot AN;S_{AMN}=\dfrac{1}{2}\cdot MO\cdot AN\)
mà DO>MO
nên \(S_{ADN}>S_{AMN}\)
=>\(S_{DON}>S_{MON}\)
Đề của bạn thiếu 1 chi tiết rất quan trọng để làm được bài toán này đó là bạn không cho biết điếm N và điểm E ở chỗ nào
Do đó bài toán của bạn không thể nào giải được