Cho a/b=c/d C/m
a) ab/cd=(a^2+b^2)/(c^2+d^2)
b) ac/bd=(a^2+c^2)/(b^2+d^2)
c) (7a^2+3ab)/(11a^2-8b^2)=(7c^2+3ab)/(11c^2-8d^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\left(1\right)\)
\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\dfrac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\left(2\right)\)
\(\left(1\right)\left(2\right)\RightarrowĐpcm\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk,c=dk\)
a) \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2}{d^2}\)\(=\dfrac{\dfrac{a}{k}.b}{\dfrac{c}{k}.d}=\dfrac{ab}{cd}=VT\)
Vậy...
b) \(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{5k+3}{5k-3}\)
\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{5k+3}{5k-3}\)
Suy ra \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
c) \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7\left(bk\right)^2+3\left(bk\right).b}{11\left(bk\right)^2-8b^2}\)\(=\dfrac{7k^2+3k}{11k^2-8}\)
\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7\left(dk\right)^2+3\left(dk\right).d}{11\left(dk\right)^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\)
Suy ra \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
a) Có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
=> \(ad=bc\)
=> \(\dfrac{a}{c}=\dfrac{b}{d}\) => \(\left(\dfrac{a}{c}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{ab}{cd}=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\)
(theo tính chất dãy tỉ số bằng nhau)
=> (đpcm)
b) Có: \(\dfrac{a}{b}=\dfrac{c}{d}\) => \(\dfrac{a}{c}=\dfrac{b}{d}\)
=> \(\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)(theo tính chất dãy tỉ số bằng nhau)
=> \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\) (đpcm)
c) Có: \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
=> \(\dfrac{a^2}{c^2}=\dfrac{ab}{cd}=\dfrac{b^2}{d^2}\) => \(\dfrac{7a^2}{7c^2}=\dfrac{3ab}{3cd}=\dfrac{11a^2}{11c^2}=\dfrac{8b^2}{8d^2}\)
=> \(\dfrac{7a^2+3ab}{7c^2+3cd}=\dfrac{11a^2-8b^2}{11c^2-8d^2}\) (theo tính chất dãy tỉ số bằng nhau)
=> \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)(đpcm)
#Ayumu
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3\cdot bk\cdot b}{11\cdot b^2k^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{7k^2+3k}{11k^2-8}\)
\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2k^2+3\cdot dk\cdot d}{11d^2k^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\)
Do đó: \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
a)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\)(T/C...)
\(\Rightarrow\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}\left(đpcm\right)\)
b)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a}{b}\cdot\frac{c}{d}=\frac{ac}{bd}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)(T/C...)
\(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)
c)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{7a^2}{7c^2}=\frac{11a^2}{11c^2}=\frac{8b^2}{8d^2}=\frac{3ab}{3cd}\)
\(\Rightarrow\frac{7a^2}{7c^2}=\frac{11a^2}{11c^2}=\frac{8b^2}{8d^2}=\frac{3ab}{3cd}=\frac{7a^2+3ab}{7c^2+3cd}=\frac{11a^2-8b^2}{11c^2-8d^2}\)
\(\Rightarrow\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\left(đpcm\right)\)
a; Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)
b: \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)
Do đó: \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
c: \(\dfrac{7a^2-3ab}{11a^2-8b^2}=\dfrac{7b^2k^2-3\cdot bk\cdot b}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2-3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2-3k}{11k^2-8}\)
\(\dfrac{7c^2-3cd}{11c^2-8d^2}=\dfrac{7d^2k^2-3kd^2}{11d^2k^2-8d^2}=\dfrac{7k^2-3k}{11k^2-8}\)
Do đó: \(\dfrac{7a^2-3ab}{11a^2-8b^2}=\dfrac{7c^2-3cd}{11c^2-8d^2}\)
Cùng thêm vào cả tử số và mẫu số một số đơn vị thì hiệu vẫn không đổi.
Hiệu của tử số và mẫu số là: 92 – 67 = 25
Hiệu số phần bằng nhau: 4 – 3 = 1 (phần)
Tử số của phân số mới là: 25 : 1 x 3 = 75
Số cần thêm vào là; 75 – 67 = 8
ĐS: 8
a)
b)
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a}{b}.\frac{c}{d}\)
\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{ac}{bd}.\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}.\)
\(\Rightarrow\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right).\)
Chúc bạn học tốt!
Đây là gì :