giải hệ phương trình nghiệm nguyên
\(\left\{{}\begin{matrix}x+y+z=100\\5x+3y+\frac{z}{3}=100\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}15x+9y+z=300\\x+y+z=100\end{matrix}\right.\)
\(\Rightarrow14x+8y=200\Rightarrow7x+4y=100\)
\(\Leftrightarrow7x=4\left(25-y\right)\)
Do 7 và 4 nguyên tố cùng nhau \(\Rightarrow x⋮4\Rightarrow x=4k\)
\(\Rightarrow y=25-7k\)
\(z=100-\left(x+y\right)=3k+75\)
Vậy nghiệm của pt là \(\left(x;y;z\right)=\left(4k;-7k+25;3k+75\right)\) với \(k\in Z\)
Lời giải:
Theo hằng đẳng thức đáng nhớ:
$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)$
$\Leftrightarrow 3=27-3(x+y)(y+z)(x+z)$
$\Leftrightarrow (x+y)(y+z)(x+z)=8$Đặt $(x+y,y+z,x+z)=(a,b,c)$ thì $abc=8$ và $a+b+c=6$Do $a+b+c=6>0$ nên $(a,b,c)$ sẽ là 3 số dương hoặc $1$ dương $2$ âm.
TH1: $a,b,c$ đều dương.
Áp dụng BĐT AM-GM: $a+b+c\geq 3\sqrt[3]{abc}=3\sqrt[3]{8}=6$
Dấu "=" xảy ra khi $a=b=c=2$
$\Leftrightarrow x+y=y+z=x+z=2\Leftrightarrow x=y=z=1$
TH2: $a,b,c$ có 1 số dương 2 số âm. Giả sử $a$ dương và $b,c$ âm.
$a+b+c=6$ nên $a>6$. Mà $abc=8$ nên $a=8$
$\Rightarrow bc=1$ và $b+c=-2$
$\Rightarrow b=c=-1$
$\Rightarrow x=y=4; z=-5$
Vậy $(x,y,z)=(1,1,1); (4,4,-5)$ và hoán vị.
Ta có\(\left\{{}\begin{matrix}x+y+z=100\left(1\right)\\15x+9y+z=300\left(2\right)\end{matrix}\right.\)
trừ (2) cho (1) ta đc 14x+8y=200
<=>7x+4y=100
suy ra y= \(\dfrac{100-7x}{4}\)=25-\(\dfrac{7x}{4}\)
mà y là Số TN suy ra y>0 và \(\dfrac{7x}{4}\)<25
suy ra x \(\in\left\{4;8;12\right\}\)
Nếu x=4 thì y=18 và z=78
x=8 thì y=11 và z=81
x=12 thì y=4 và z=84
\(1,\Leftrightarrow\left\{{}\begin{matrix}x=2y+4\\-4y-8+5y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\cdot5+4=14\\y=5\end{matrix}\right.\\ 2,\Leftrightarrow\left\{{}\begin{matrix}5x-30+6x=3\\y=10-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\\ 3,\Leftrightarrow\left\{{}\begin{matrix}x=4-2y\\6y-12+y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{10}{7}\\y=\dfrac{19}{7}\end{matrix}\right.\)
\(a)DK:z\ne1\)
\(\left\{{}\begin{matrix}\frac{4}{z-1}+2x=7\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{z-1}+x=\frac{7}{2}=3,5\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x-5y=-5\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2y=-8\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=4\\5x=15\\\frac{2}{z-1}=\frac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\\z=5\end{matrix}\right.\left(T/m\right)\)
Vậy ...
\(b)DK:\left\{{}\begin{matrix}x,y,z\ne0\\x,y,z>0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+\frac{1}{y}=2\\y+\frac{1}{z}=2\\z+\frac{1}{x}=2\end{matrix}\right.\)
\(\Leftrightarrow x+\frac{1}{x}+y+\frac{1}{y}+z+\frac{1}{z}=6\)
\(\Leftrightarrow\left(x-2.\sqrt{x}.\frac{1}{\sqrt{x}}+\frac{1}{x}\right)+\left(y-2.\sqrt{y}.\frac{1}{\sqrt{y}}+\frac{1}{y}\right)+\left(z-2\sqrt{z}.\frac{1}{\sqrt{z}}+\frac{1}{z}\right)+2+2+2=6\)
\(\Leftrightarrow\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2+\left(\sqrt{y}-\frac{1}{\sqrt{y}}\right)^2+\left(\sqrt{z}-\frac{1}{\sqrt{z}}\right)^2=0\)
Vì \(\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2;\left(\sqrt{y}-\frac{1}{\sqrt{y}}\right)^2;\left(\sqrt{z}-\frac{1}{\sqrt{z}}\right)\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x}=\frac{1}{\sqrt{x}}\\\sqrt{y}=\frac{1}{\sqrt{y}}\\\sqrt{z}=\frac{1}{\sqrt{z}}\end{matrix}\right.\)
\(\Leftrightarrow x=y=z=1\left(T/m\right)\)
Vậy ...
\(x^3=3y^2-3y+1=3\left(y-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)
\(\Rightarrow x\ge\dfrac{1}{\sqrt[3]{4}}>\dfrac{1}{2}\)
Tương tự ta có \(y;z>\dfrac{1}{2}\)
\(\Rightarrow x+y-1>0;y+z-1>0;z+x-1>0\)
TH1: \(x\ge y\Rightarrow x^3\ge y^3\Rightarrow3y^2-3y+1\ge3z^2-3z+1\)
\(\Rightarrow y^2-z^2-y+z\ge0\Rightarrow\left(y-z\right)\left(y+z+1\right)\ge0\)
\(\Rightarrow y-z\ge0\Rightarrow y\ge z\Rightarrow x\ge z\) (1)
Cũng do \(y\ge z\Rightarrow y^3\ge z^3\)
\(\Rightarrow3z^2-3z+1\ge3x^2-3x+1\Rightarrow z^2-x^2-z+x\ge0\)
\(\Rightarrow\left(z-x\right)\left(z+x+1\right)\ge0\Rightarrow z\ge x\) (2)
Từ (1);(2) \(\Rightarrow x=y=z\)
TH2: \(x\le y\), hoàn toàn tương tự ta cũng chứng minh được \(x=y=z\)
Thay vào hệ ban đầu:
\(\left\{{}\begin{matrix}x^3-3x^2+3x=1\\y^3-3y^2+3y=1\\z^3-3z^2+3z=1\end{matrix}\right.\) \(\Rightarrow x=y=z=1\)