cho a+b+c=6 cmr\(\frac{a}{\sqrt{b^3+1}}+\frac{b}{\sqrt{c^3+1}}+\frac{c}{\sqrt{a^3+1}}\ge2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình chỉ làm sơ sơ, có gì bạn sửa lại
Ta có: \(\frac{a}{\sqrt{b^3+1}}+\frac{b}{\sqrt{c^3+1}}+\frac{c}{\sqrt{a^3+1}}\)
Đặt a ; b và c = 2 .
Thế số vào biểu thức ta có:
\(\frac{2}{\sqrt{2^3+1}}+\frac{2}{\sqrt{2^3+1}}+\frac{2}{\sqrt{2^3+1}}\)
\(\Leftrightarrow\frac{2}{\left(2^3+1\right)^2}+\frac{2}{\left(2^3+1\right)^2}+\frac{2}{\left(2^3+1\right)^2}\)
\(\Leftrightarrow\frac{2}{\left(2^3+1\right)^2}.3\Leftrightarrow\frac{2}{\left(8+1\right)^2}.3\Leftrightarrow\frac{2}{9^2}\ge2\)
Ta có ĐPCM
Conan: bác mori ơi cháu biết hung thủ là ai rồi
Mouri : cái j , trẻ con đi chỗ khác chơi
Conan : hừ , lại phải dùng thuốc gây mê rồi , pặc
Mouri : á á :) , lại thế nữa rồi , á á
Conan : thanh tra megure ơi bác mouri nói đã tìm ra hung thủ rồi
megure : Thật không Mori , anh đã tìm ra hung thủ rồi à
Mouri : chính xác hung thủ chính là hắn :)
dự đoán của Mouri a=b=c=2
áp dụng BDT cô si ta có
\(VT\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{\sqrt{b^3+1}+\sqrt{c^3+1}+\sqrt{a^3+1}}.\)
áp dụng BDT cô si dạng shinra " mẫu số" ta có với Q= mẫu số
\(\sqrt{\left(b^3+1\right).9}\le\frac{b^3+1+9}{2}\)
\(\sqrt{\left(c^3+1\right).9}\le\frac{c^3+1+9}{2}\)
\(\sqrt{a^3+1.9}\le\frac{a^3+1+9}{2}\)
\(3Q\le\frac{1}{2}\left(a^3+b^3+c^3\right)+15.\)
có
\(a^3+8+8\ge3\sqrt[3]{a^32^32^3}=12a\)
\(b^3+8+8\ge12b\)
\(c^3+8+8\ge12c\)
\(a^3+b^3+c^3\ge72-48=24\)
\(3Q\le\frac{24}{2}+15=27\Leftrightarrow Q=9\)
thay vào VT ta được
\(VT\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{9}\)
\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=\left(a+b+c\right)+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
\(VT\ge\frac{6+2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)}{9}\)
\(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\ge3\sqrt[3]{\sqrt{a^2b^2c^2}}=3\sqrt[3]{abc}\)
\(a+b+c\ge3\sqrt[3]{abc}\)
suy ra đươc \(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}=a+b+c=6\)
\(VT\ge\frac{6+2\left(6\right)}{9}=2\)
dấu = xảy ra khi a=b=c=2
Áp dụng BĐT AM-GM và Cauchy-Schwarz ta có:
\(VT=Σ_{cyc}\frac{a}{\sqrt{\left(b+1\right)\left(b^2-b+1\right)}}\geΣ_{cyc}\frac{a}{\sqrt{\frac{\left(b+1+b^2-b+1\right)^2}{4}}}\)
\(=Σ_{cyc}\frac{2a}{b^2+2}\)\(=Σ_{cyc}\frac{2a^2}{ab^2+2a}\ge\frac{2\left(a+b+c\right)^2}{Σ_{cyc}ab^2+2\left(a+b+c\right)}\)
Cần c.minh \(\frac{2\left(a+b+c\right)^2}{Σ_{cyc}ab^2+2\left(a+b+c\right)}\ge2\)\(\Leftrightarrow\frac{36}{Σ_{cyc}ab^2+12}\ge1\)
Hay \(ab^2+bc^2+ca^2\le24\)\(\Leftrightarrow\)\(\left(a+b+c\right)^3\ge9\left(ab^2+bc^2+ca^2\right)\left(☺\right)\)
\(VT_{\left(☺\right)}\ge3\left(a+b+c\right)\left(ab+bc+ac\right)\ge9\left(ab^2+bc^2+ca^2\right)\) (vì \(\left(Σa\right)^2\ge3\left(Σab\right)\))
\(\Leftrightarrow\left(a+b+c\right)\left(ab+ac+bc\right)\ge3\left(ab^2+bc^2+ca^2\right)\)
Tự c.m nốt gợi ý: \(a^2b+b^2c+c^2a-\)\(\left(ab^2+bc^2+ca^2\right)\)\(=\frac{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}{3}\)
Và \(3abc-\left(ab^2+bc^2+ca^2\right)=ab\left(c-b\right)+bc\left(a-c\right)+ac\left(b-a\right)\)
3.Áp dụng BĐT \(\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)ta có
\(\frac{ab}{a+3b+2c}=ab.\frac{1}{\left(a+c\right)+2b+\left(b+c\right)}\le\frac{1}{9}ab.\left(\frac{1}{a+c}+\frac{1}{2b}+\frac{1}{b+c}\right)\)
TT \(\frac{bc}{b+3c+2a}\le\frac{bc}{9}.\left(\frac{1}{b+a}+\frac{1}{2c}+\frac{1}{c+a}\right)\)
\(\frac{ca}{c+3a+2b}\le\frac{ac}{9}.\left(\frac{1}{a+b}+\frac{1}{2a}+\frac{1}{b+c}\right)\)
=> \(VT\le\frac{1}{18}\left(a+b+c\right)+\Sigma.\frac{1}{9}.\left(\frac{bc}{a+c}+\frac{ba}{a+c}\right)=\frac{1}{18}\left(a+b+c\right)+\frac{1}{9}\left(a+b+c\right)=\frac{1}{6}\left(a+b+c\right)\)
Dấu bằng xảy ra khi a=b=c
cảm ơn bạn nhiều, bạn có thể giúp mình hai câu kia nữa được không
Áp dụng BĐT Cauchy cho các cặp số dương, ta có: \(VT=\Sigma\frac{a}{\sqrt{b^3+1}}=\Sigma\frac{a}{\sqrt{\left(b+1\right)\left(b^2-b+1\right)}}\)
\(\ge\Sigma\frac{a}{\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}}=\Sigma\frac{2a}{b^2+2}=\Sigma\left(a-\frac{ab^2}{b^2+2}\right)\)
\(=\Sigma\left(a-\frac{2ab^2}{b^2+b^2+4}\right)\ge\Sigma\left(a-\frac{2ab^2}{3\sqrt[3]{4b^4}}\right)\)\(=\Sigma\left[a-\frac{a\sqrt[3]{2b^2}}{3}\right]=\Sigma\left[a-\frac{a\sqrt[3]{2.b.b}}{3}\right]\)
\(\ge\Sigma\left[a-\frac{a\left(2+b+b\right)}{9}\right]\)\(=\left(a+b+c\right)-\frac{2\left(a+b+c\right)}{9}-\frac{2\left(ab+bc+ca\right)}{9}\)
\(=\frac{7\left(a+b+c\right)}{9}-\frac{2\left(ab+bc+ca\right)}{9}\)\(\ge\frac{7\left(a+b+c\right)}{9}-\frac{2.\frac{\left(a+b+c\right)^2}{3}}{9}=2\)
Đẳng thức xảy ra khi a = b = c = 2
ap dung bat dang thuc amgm
\(\sqrt{b^3+1}\) \(=\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\frac{b+1+b^2-b+1}{2}\) \(=\frac{b^2+2}{2}\)
\(\Rightarrow\frac{a}{\sqrt{b^3+1}}\ge2.\frac{a}{b^2+2}\)
P=\(\frac{a}{\sqrt{b^3+1}}+\frac{b}{\sqrt{c^3+1}}+\frac{c}{\sqrt{a^3+1}}\ge2\left(\frac{a}{b^2+2}+\frac{b}{c^2+2}+\frac{c}{a^2+2}\right)\) \(\)
=\(2\left(\frac{a^2}{a\left(b^2+2\right)}+\frac{b^2}{b\left(c^2+2\right)}+\frac{c^2}{c\left(a^2+2\right)}\right)\)
tiep tuc ap dung bdt cauchy-swart dang phan thuc
\(\ge2\frac{\left(a+b+c\right)^2}{a\left(b^2+2\right)+b\left(c^2+2\right)+c\left(a^2+2\right)}\)=
Bạn tham khảo tại đây:
Câu hỏi của Phạm Tuấn Kiệt - Toán lớp 9 - Học toán với OnlineMath
i don know