K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) \(\sqrt {3{x^2} - 6x + 1}  = \sqrt { - 2{x^2} - 9x + 1} \)

Bình phương hai vế của phương trình \(\sqrt {3{x^2} - 6x + 1}  = \sqrt { - 2{x^2} - 9x + 1} \) ta được

\(3{x^2} - 6x + 1 =  - 2{x^2} - 9x + 1\)

\( \Leftrightarrow 5{x^2} + 3x = 0\)

\( \Leftrightarrow x\left( {5x + 3} \right) = 0\)

\( \Leftrightarrow x = 0\) hoặc \(x = \frac{{ - 3}}{5}\)

Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy cả hai giá trị x = 0 và \(x = \frac{{ - 3}}{5}\) đều thỏa mãn.

Vậy tập nghiệm của phương trình đã cho là \(S = \left\{ {0;\frac{{ - 3}}{5}} \right\}\)

b) \(\sqrt {2{x^2} - 3x - 5}  = \sqrt {{x^2} - 7} \)

Bình phương hai vế của phương trình \(\sqrt {2{x^2} - 3x - 5}  = \sqrt {{x^2} - 7} \) , ta được

\(2{x^2} - 3x - 5 = {x^2} - 7\)

\( \Leftrightarrow {x^2} - 3x + 2 = 0\)

\( \Leftrightarrow x = 1\) hoặc \(\)\(x = 2\)

 Thay lần lượt giá trị của x vào phương trình đã cho, ta thấy không có giá trị nào của x thỏa mãn.

Vậy phương trình đã cho vô nghiệm.

NV
20 tháng 7 2021

a.

ĐKXĐ: \(x\ge3\)

(Tốt nhất bạn kiểm tra lại đề cái căn đầu tiên của \(\sqrt{x-3}\) là căn bậc 2 hay căn bậc 3). Vì nhìn ĐKXĐ thì thấy căn bậc 2 là không hợp lý rồi đó

Pt tương đương:

\(\sqrt{x-3}+\sqrt[3]{x^2+1}+\left(x+1\right)\left(x-2\right)=0\)

Do \(x\ge3\Rightarrow x-2>0\Rightarrow\left(x+1\right)\left(x-2\right)>0\)

\(\Rightarrow\sqrt{x-3}+\sqrt[3]{x^2+1}+\left(x+1\right)\left(x-2\right)>0\)

Pt vô nghiệm

NV
20 tháng 7 2021

b.

ĐKXĐ: \(x\ge-\dfrac{3}{2}\)

Pt: \(2x+3-\sqrt{2x+3}-\left(4x^2-6x+2\right)=0\)

Đặt \(\sqrt{2x+3}=t\ge0\) ta được:

\(t^2-t-\left(4x^2-6x+2\right)=0\)

\(\Delta=1+4\left(4x^2-6x+2\right)=\left(4x-3\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t_1=\dfrac{1+4x-3}{2}=2x-1\\t_2=\dfrac{1-4x+3}{2}=2-2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+3}=2x-1\left(x\ge\dfrac{1}{2}\right)\\\sqrt{2x+3}=2-2x\left(x\le1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=4x^2-4x+1\left(x\ge\dfrac{1}{2}\right)\\2x+3=4x^2-8x+4\left(x\le1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{17}}{4}\\x=\dfrac{5-\sqrt{21}}{4}\end{matrix}\right.\)

a: \(\Leftrightarrow2\cdot5\sqrt{x-3}-\dfrac{1}{2}\cdot2\sqrt{x-3}+\dfrac{1}{7}\cdot7\sqrt{x-3}=20\)

=>\(10\cdot\sqrt{x-3}=20\)

=>\(\sqrt{x-3}=2\)

=>x-3=4

=>x=7

b: =>|x-3|=2

=>x-3=2 hoặc x-3=-2

=>x=5 hoặcx=1

13 tháng 10 2019

a,đk -1<x<7

x+1+2 căn 7-x-2 căn x+1=căn (x+1)(7-x)

30 tháng 8 2019

b) ĐK: \(1-\sqrt{3}< x< 1+\sqrt{3}\).Đặt:

\(\sqrt{2x^2-4x+3}-1+\sqrt{3x^2-6x+7}-2+x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[\frac{2}{\sqrt{2x^2-4x+3}+1}+\frac{3}{\sqrt{3x^2-6x+7}+2}+1\right]=0\)

Cái ngoặc to vô nghiệm.Do đó x = 1(TM)

Vậy...

P.s: Nãy giờ em đi đánh giá lung tùng nào là "truy ngược dấu liên hợp" mất cả tiếng đồng hồ không ra và cảm thấy uổng phí quá:( Bài này nếu sai thì em chịu luôn

30 tháng 8 2019

Èo, bỏ chữ Đặt giúp em(nãy tính làm cách đặt ẩn phụ như không ra mà quên xóa đi) >_<

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

19 tháng 7 2016

\(\sqrt{7-x}+\sqrt{x+1}=x^2-6x+13\) (ĐKXĐ : \(-1\le x\le7\))

Áp dụng bất đẳng thức Bunhiacopxki vào vế trái của phương trình : \(\left(1.\sqrt{7-x}+1.\sqrt{x+1}\right)^2\le\left(1^2+1^2\right)\left(7-x+x+1\right)\)

\(\Rightarrow\left(\sqrt{7-x}+\sqrt{x+1}\right)^2\le16\Rightarrow\sqrt{7-x}+\sqrt{x+1}\le4\) (1)

Xét vế phải của phương trình : \(x^2-6x+13=\left(x^2-6x+9\right)+4=\left(x-3\right)^2+4\ge4\) (2)

Từ (1) và (2) ta suy ra phương trình ban đầu tương đương với : \(\begin{cases}\sqrt{7-x}+\sqrt{x+1}=4\\x^2-6x+13=4\end{cases}\) \(\Leftrightarrow x=3\) (TMĐK)

Vậy phương trình có nghiệm x = 3