K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2017

cho mình sửa nha \(2\sqrt{2x-1}\)

14 tháng 4 2020

\(\hept{\begin{cases}2\sqrt{2xy-y}+2x+y=10\left(1\right)\\\sqrt{3y+4}-\sqrt{2y+1}+2\sqrt{2x-1}=3\left(2\right)\end{cases}}\)

\(ĐK:x\ge\frac{1}{2};y\ge0\)

5 tháng 7 2020

\(\left(1\right)\Leftrightarrow\left(\sqrt{2x-1}+\sqrt{y}\right)^2=9\Leftrightarrow\sqrt{2x-1}+\sqrt{y}=3\)

\(\Leftrightarrow\sqrt{2x-1}=3-\sqrt{y}\)(*)

Thay \(\sqrt{2x-1}=3-\sqrt{y}\)vào (2), ta được: \(\sqrt{3y+4}-\sqrt{2y+1}-2\left(\sqrt{y}-2\right)-1=0\)

\(\Leftrightarrow\left(\sqrt{3y+4}-4\right)-\left(\sqrt{2y+1}-3\right)-2\left(\sqrt{y}-2\right)=0\)

\(\Leftrightarrow\frac{3\left(y-4\right)}{\sqrt{3y+4}+4}-\frac{2\left(y-4\right)}{\sqrt{2y+1}+3}-\frac{2\left(y-4\right)}{\sqrt{y}+2}=0\)

\(\Leftrightarrow\left(y-4\right)\left(\frac{3}{\sqrt{3y+4}+4}-\frac{2}{\sqrt{2y+1}+3}-\frac{2}{\sqrt{y}+2}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}y=4\Rightarrow x=1\\\frac{3}{\sqrt{3y+4}+4}=\frac{2}{\sqrt{2y+1}+3}+\frac{2}{\sqrt{y}+2}\left(3\right)\end{cases}}\)

Với \(y\ge0\)thì \(\frac{3}{\sqrt{3y+4}+4}\le\frac{1}{2}\)

Từ (*) suy ra \(y\le9\Rightarrow\frac{2}{\sqrt{2y+1}+3}+\frac{2}{\sqrt{y}+2}>\frac{1}{2}\)

Suy ra (3) vô nghiệm

Vậy hệ có cặp nghiệm duy nhất \(\left(x,y\right)=\left(1,4\right)\)

12 tháng 2 2023

\(3x^2+y^2+4xy=5x+2y+1\)

\(\Leftrightarrow3x^2+x\left(4y-5\right)+\left(y^2-2y-1\right)=0\left(1\right)\)

Coi phương trình (1) là phương trình ẩn x tham số y, ta có:

\(\Delta=\left(4y-5\right)^2-3.4.\left(y^2-2y-1\right)\)

\(=16y^2-40y+25-12y^2+24y+12\)

\(=4y^2-16y+37\)

Để phương trình (1) có nghiệm nguyên thì \(\Delta\) phải là số chính phương hay \(\Delta=4y^2-16y+37=a^2\) (a là số tự nhiên).

\(\Rightarrow4y^2-16y+16+21=a^2\)

\(\Rightarrow a^2-\left(2y-4\right)^2=21\)

\(\Rightarrow\left(a-2y+4\right)\left(a+2y-4\right)=21\)

\(\Rightarrow a-2y+4;a+2y-4\) là các ước số của 21.

Với \(y\ge2\Rightarrow a-2y+4\le a+2y-4\) và \(a+2y-4\ge0\) Lập bảng:

a-2y+413
a+2y-4217
a115
y7

3

Với \(y\ge2\Rightarrow a-2y+4\le a+2y-4\) và \(a+2y-4\ge0\) Lập bảng:

a-2y+4217
a+2y-413
a115
y-3(loại vì y>0)1

Với a=11, y=7. Phương trình (1) có 2 nghiệm:

\(x_1=\dfrac{-\left(4.7-5\right)+\sqrt{11^2}}{6}=-2\) (loại vì x>0)

\(x_2=\dfrac{-\left(4.7-5\right)-\sqrt{11^2}}{6}=-\dfrac{17}{3}\left(loại\right)\)

Với \(a=5;y=3\). Phương trình (1) có 2 nghiệm:

\(x_1=\dfrac{-\left(4.3-5\right)+\sqrt{5^2}}{6}=-\dfrac{1}{3}\left(loại\right)\)

\(x_2=\dfrac{-\left(4.3-5\right)-\sqrt{5^2}}{6}=-2\) (loại vì x>0)

Với \(a=5;y=1\). Phương trình (1) có 2 nghiệm:

\(x_1=\dfrac{-\left(4.1-5\right)+\sqrt{5^2}}{6}=1\)

\(x_2=\dfrac{-\left(4.1-5\right)-\sqrt{5^2}}{6}=-\dfrac{2}{3}\left(loại\right)\)

Vậy x,y nguyên dương thỏa mãn phương trình trên là \(x=y=1\)

 

12 tháng 2 2023

cho mình hỏi sao để nó có nghiệm nguyên khi nó là số chính phương thế bạn

 

16 tháng 6 2020

Ai giúp em với ạ

16 tháng 6 2020

1. Ta có: \(x^2-2xy-x+y+3=0\)

<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)

<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)

<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)

<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)

Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)

Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Kết luận:...

29 tháng 9 2016

Ta có 

PT <=> (1 + 5y2)x2 - 37yx + y2 + 60 = 0

Xét pt theo ẩn x ta có để pt có nghiệm thì 

\(\ge0\)

<=> (37y)2 - 4(1 + 5y2)(y2 + 60) \(\ge0\)

<=> - 20y4 + 165y2 - 240\(\ge0\)

<=> 1 < y2 < 7

=> y2 = 4

=> y = (2;-2)

=> x =  (2;-2)