K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2019

Ta có : S = 2 + 22 + 23 + 24 + 25 + 26 + ... + 297 + 298 + 299

=  (2 + 22 + 23) + (24 + 25 + 26) + ... + (297 + 298 + 299)

=  (2 + 22 + 23) + 23. (2 + 22 + 23) + ... + 296. (2 + 22 + 23)

= 14 + 23.14 + ... + 296.14

= 14.(1 + 23 + ... + 296\(⋮\)14

 => \(S⋮14\left(\text{ĐPCM}\right)\)

26 tháng 12 2019

Ta có : S=2+22+23+...+299

              =(2+22+23)+(24+25+26)+...+(297+298+299)

             =2(1+2+22)+24(1+2+22)+...+297(1+2+22)

             =2.7+24.7+...+297.7

             =14+23.2.7+...+296.2.7

            =14.23.14+...+296.14

Vì 14\(⋮\)14 nên 14.23.14+...+296.14\(⋮\)14

hay S\(⋮\)14

Vậy S\(⋮\)14.

Ta có:

M=21+22+23+24+....+220⇔2.M=2.(21+22+23+24+....+220)⇔2M=2.21+2.22+2.23+2.24+....+2.220⇔2M=22+23+24+25+......+221⇒2M−M=(22+23+24+25+......+221)−(21+22+23+24+....+220)⇔M=221−21⇔M=2.220−2⇔M=2.(24)5−2⇔M=2.165−2M=21+22+23+24+....+220⇔2.M=2.(21+22+23+24+....+220)⇔2M=2.21+2.22+2.23+2.24+....+2.220⇔2M=22+23+24+25+......+221⇒2M−M=(22+23+24+25+......+221)−(21+22+23+24+....+220)⇔M=221−21⇔M=2.220−2⇔M=2.(24)5−2⇔M=2.165−2

6x6x luôn có chữ số tận cùng là 6 nên 165165 có chữ số tận cùng là 6.

Do đó, 2.1652.165 có chữ số tận cùng là 2

Suy ra 2.165−22.165−2 có chữ số tận cùng là 0

Hay 2.165−22.165−2 chia hết cho 10.

Vậy M chia hết cho 10.

dựa vô đó nha

nếu bn cần gấp thì dựa dô đó chứ mình còn ôn bài nên ko thể giải giúp bn. Thông cảm nha

18 tháng 4 2016

a)S=398(3-1)+396(3-1)+...+32(3-1)+(3-1)

S=398*2+396*2+...+32*2+2

S=396*2(32+1)+...+2(32+1)

S=20(396+...+1)

=>S chia hết 20

b) phần này thì dễ rồi nhé

22 tháng 9 2016

S = 1 - 3 + 32 - 33 + ... + 398 - 399 (có 100 số; 100 chia hết cho 4)

S = (1 - 3 + 32 - 33) + (34 - 35 + 36 - 37) + ... + (396 - 397 + 398 - 399)

S = -20 + 34.(1 - 3 + 32 - 33) + ... + 396.(1 - 3 + 32 - 33)

S = -20 + 34.(-20) + ... + 396.(-20)

S = -20.(1 + 34 + ... + 396\(⋮20\left(đpcm\right)\)

 

 

24 tháng 3 2017

tổng s có 100 số hạng, nhóm thành 25 nhóm mỗi nhóm có 4 số hạng, có tổng chia hết cho 20

27 tháng 4 2017

Tổng các số hạng của S là 99 số hạng.

a/ Nhóm 3 số hạng liên tiếp với nhau, ta được 33 nhóm như sau:

S=(2+22+23)+....+(297+298+299)=2(1+2+22)+24(1+2+22)+...+297(1+2+22)

=> S=2.7+24.7+...+297.7=7(2+24+297)

=> S chia hết cho 7

b/ 

27 tháng 4 2017

S=1-1+2+22+23+...+299=(1+2+22+23+...+299)-1

Tổng các số hạng trong ngoặc là 100 số hạng. Nhóm 5 số hạng liên tiếp với nhau ta được:

S=(1+2+22+23+24)+25(1+2+22+23+24)+...+295(1+2+22+23+24)-1

S=31.(1+25+...+295)-1

=> S+1=31.(1+25+...+295) => S+1 chia hết cho 31

=> S không chia hết cho 31

4 tháng 12 2017

S = (1+3+3^2)+(3^3+3^4+3^5)+.....+(3^97+3^98+3^99)

   = 10+3^3.(1+3+3^2)+.....+3^97.(1+3+3^2)

   = 10+3^3.10+.....+3^97.10

   = 10.(1+3^3+....+3^97) chia hết cho 10

Mà 10 chia hết cho 5 => S chia hết cho 5 

k mk nha