Tìm GTNN hoặc GTLN của
A=2x^2-5x+3/(x+1)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-4x+7=\left(x^2-4x+4\right)+3=\left(x-2\right)^2+3\)
Vì: \(\left(x-2\right)^2\ge0\)
=> \(\left(x-2\right)^2+3\ge3\)
Vậy GTNN của A là 3 khi x=2
\(B=2x^2+12x-1=2\left(x^2+6x+9\right)-19=2\left(x+3\right)^2-19\)
Vì: \(2\left(x+3\right)^2\ge0\)
=> \(2\left(x+3\right)^2-19\ge-19\)
Vậy GTNN của B là -19 khi x=-3
\(C=5x-x^2=-\left(x^2-5x+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)
Vì: \(-\left(x-\frac{5}{2}\right)^2\le0\)
=> \(-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Vậy GTLN của C là \(\frac{25}{4}\) khi \(x=\frac{5}{2}\)
Căm ơn bạn nhiều nhé ! Nếu được thì bạn làm giúp tớ bài hình bên trên nhé.
a) Sửa đề: Tìm GTNN
A = |2x - 1| - 4
Ta có:
|2x - 1| ≥ 0 với mọi x ∈ R
⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R
Vậy GTNN của A là -4 khi x = 1/2
b) B = 1,5 - |2 - x|
Ta có:
|2 - x| ≥ 0 với mọi x ∈ R
⇒ -|2 - x| ≤ 0 với mọi x ∈ R
⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R
Vậy GTLN của B là 1,5 khi x = 2
c) C = |x - 3| ≥ 0 với mọi x ∈ R
Vậy GTNM của C là 0 khi x = 3
d) D = 10 - 4|x - 2|
Ta có:
|x - 2| ≥ 0 với mọi x ∈ R
⇒ 4|x - 2| ≥ 0 với mọi x ∈ R
⇒ -4|x - 2| ≤ 0 với mọi x ∈ R
⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R
Vậy GTLN của D là 10 khi x = 2
\(A=2x^2+10x-1=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge-\frac{27}{2}\)
=> Min A \(=-\frac{27}{2}\Leftrightarrow x=-\frac{5}{2}\)
\(B=5x^2-x=5\left(x-\frac{1}{10}\right)^2-\frac{1}{20}\ge-\frac{1}{20}\)
=> Min B \(=-\frac{1}{20}\Leftrightarrow x=\frac{1}{10}\)
\(1.A=x^2+3x-1=-\left(x^2-2.x.\frac{3}{2}+\frac{3}{2}^2-\frac{5}{4}\right)\)
\(A=-\left(x-\frac{3}{2}\right)^2+\frac{5}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0,x\in R\)
do đó \(-\left(x-\frac{3}{2}\right)^2\le0,x\in R\)
nên \(-\left(x-\frac{3}{2}\right)^2+\frac{5}{4}\le\frac{5}{4},x\in R\)
Vậy \(Max_A=\frac{5}{4},x=\frac{3}{2}\)
Đặt: \(A=\left(x-3\right)\left(x+3\right)+2\left(2x+1\right)^2\)
=> \(A=x^2-9+2\left(4x^2+4x+1\right)\)
=> \(A=x^2-9+8x^2+8x+2\)
=> \(A=9x^2+8x-7\)
=> \(A=\left(3x+\frac{4}{3}\right)^2-\frac{79}{9}\)
Có: \(\left(3x+\frac{4}{3}\right)^2\ge0\forall x\Rightarrow\left(3x+\frac{4}{3}\right)^2-\frac{79}{9}\ge-\frac{79}{9}\)
=> \(A\ge-\frac{79}{9}\)
DẤU "=" XẢY RA <=> \(\left(3x+\frac{4}{3}\right)^2=0\)
<=> \(x=-\frac{4}{9}\)
Vậy A min = \(-\frac{79}{9}\) <=> \(x=-\frac{4}{9}\)
( x - 3 )( x + 3 ) + 2( 2x + 1 )2
= x2 - 9 + 2( 4x2 + 4x + 1 )
= x2 - 9 + 8x2 + 8x + 2
= 9x2 + 8x - 7
= 9x2 + 8x + 16/9 - 79/9
= ( 3x + 4/3 )2 - 79/9
\(\left(3x+\frac{4}{3}\right)^2\ge0\forall x\Rightarrow\left(3x+\frac{4}{3}\right)^2-\frac{79}{9}\ge-\frac{79}{9}\)
Dấu " = " xảy ra <=> 3x + 4/3 = 0 => x = -4/9
=> GTNN của biểu thức = -79/9 <=> x = -4/9
\(C\ge30\forall x,y\)
Dấu '=' xảy ra khi x=1 và y=-1