chứng minh rằng với mọi số tự nhiên n thì \(\left(x^n-1\right)\left(x^{n+1}-1\right)\)chia hết cho\(\left(x+1\right)\left(x-1\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(x^n-1⋮x-1\)
\(x^{n+1}-1⋮x-1\)
=> \(\left(x^n-1\right)\left(x^{n+1}-1\right)⋮\left(x-1\right)^2\)(1)
Do n; n+1 là 2 số tự nhiên liên tiếp => 1 trong 2 số chia hết cho 2
+)Th1: n chia hết cho 2 hay n chẵn => \(x^n-1⋮x^2-1\) hay \(⋮x+1\)(2)
+)Th2: n+1 chia hết cho 2 hay n+2 chẵn.CM như trên
Mà \(x+1\), \(\left(x-1\right)^2\) ko có nhân tử chung. Từ (1),(2) suy ra \(\left(x^n-1\right)\left(x^{n+1}-1\right)⋮\left(x-1\right)^2\)\(\left(x+1\right)\)(đpcm)
Do 2 + 1 chia hết cho 3 nên theo bổ đề LTE ta có \(v_3\left(2^{3^n}+1\right)=v_3\left(2+1\right)+v_3\left(3^n\right)=n+1\).
Do đó \(2^{3^n}+1⋮3^{n+1}\) nhưng không chia hết cho \(3^{n+2}\).
Do n( n+1) là hai số tự nhiên liên tiếp ( n thuộc N) => n( n+1) chia hết cho 2 (1)
Do 2n chia hết cho 2 => 2n + 1 chia hết cho 3 ( 2) ( đoạn này hơi tắt)
Từ (1) và (2) => n ( n+1) ( 2n+1) chia hết cho BCNN( 2, 3) hay n( n+1) ( 2n+1) chia hết cho 6( đpcm)
k nha
Câu 8 :
\(N=\left(\frac{x-1}{\left(x-1\right)^2+x}-\frac{2}{x-2}\right):\left(\frac{\left(x-1\right)^4+2}{\left(x-1\right)^3-1}-x+1\right)\)
Đặt \(x-1=a\)
\(N=\left(\frac{a}{a^2+x}-\frac{2}{a-1}\right):\left(\frac{a^4+2}{a^3-1}-a\right)\)
\(N=\frac{a\left(a-1\right)-2\left(a^2+x\right)}{\left(a^2+x\right)\left(a-1\right)}:\frac{a^4+2-a\left(a^3-1\right)}{a^3-1}\)
\(N=\frac{a^2-a-2a^2-2x}{\left(a^2+x\right)\left(a-1\right)}:\frac{a^4+2-a^4+a}{a^3-1}\)
\(N=\frac{-a^2-a-2x}{\left(a^2+x\right)\left(a-1\right)}\cdot\frac{\left(a-1\right)\left(a^2+a+1\right)}{2+a}\)
\(N=\frac{-\left(a^2+a+2x\right)\left(a^2+a+1\right)}{\left(a^2+x\right)\left(2+a\right)}\)
\(N=\frac{-\left[\left(x-1\right)^2+x-1+2x\right]\left[\left(x-1\right)^2+x-1+1\right]}{\left[\left(x-1\right)^2+x\right]\left(2+x-1\right)}\)
\(N=\frac{-\left(x^2+x\right)\left(x^2-x+1\right)}{\left(x^2-x+1\right)\left(x+1\right)}\)
\(N=\frac{-x\left(x+1\right)}{x+1}\)
\(N=-x\)( đpcm )
Câu 9 : Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{x^2}{x+4}\cdot\left(\frac{x^2+16}{x}+8\right)+9\)
Bài làm :
\(P=\frac{x^2}{x+4}\cdot\frac{x^2+8x+16}{x}+9\)
\(P=\frac{x^2\left(x+4\right)^2}{x\left(x+4\right)}+9\)
\(P=x\left(x+4\right)+9\)
\(P=x^2+4x+9\)
\(P=\left(x+2\right)^2+5\ge5\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=-2\)
a: f(1)=1
=>\(a\cdot1^2+b\cdot1+1=1\)
=>a+b=0
f(-1)=3
=>\(a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+1=3\)
=>a-b=2
mà a+b=0
nên \(a=\dfrac{2+0}{2}=1;b=2-1=1\)
b: a=1 và b=1 nên \(f\left(x\right)=x^2+x+1\)
\(\Leftrightarrow\dfrac{n}{f\left(n\right)}=\dfrac{n}{n^2+n+1}\)
Gọi d=ƯCLN(n^2+n+1;n)
=>\(\left\{{}\begin{matrix}n^2+n+1⋮d\\n⋮d\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}n^2+n+1⋮d\\n\left(n+1\right)⋮d\end{matrix}\right.\)
=>\(\left(n^2+n+1\right)-n\left(n+1\right)⋮d\)
=>\(1⋮d\)
=>d=1
=>ƯCLN(n^2+n+1;n)=1
=>\(\dfrac{n}{f\left(n\right)}=\dfrac{n}{n^2+n+1}\) là phân số tối giản
Bài 2:Tìm x biết
\\(\\left(4x+3\\right)^3+\\left(5-7x\\right)^3+\\left(3x-8\\right)^3=0\\)
\\(\\Leftrightarrow\\left[\\left(4x\\right)^3+3.\\left(4x\\right)^2.3+3.4x.3^2+3^3\\right]+\\left[5^3-3.5^2.7x+3.5.\\left(7x\\right)^2-\\left(7x\\right)^3\\right]+\\left[\\left(3x\\right)^3-3.\\left(3x\\right)^2.8+3.3x.8^2-8^3\\right]=0\\)
\\(\\Leftrightarrow64x^3+144x^2+108x+27+125-525x+735x^2-343x^3+27x^3-216x^2+576x-512=0\\)
\\(\\Leftrightarrow-252x^3+663x^2+159x-360=0\\)
\\(\\Leftrightarrow3\\left(-84x^3+221x^2+53x-120\\right)=0\\)
Đặt \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]+1\)
\(=\left(n^2+3n\right)\left(n^2+2n+n+2\right)+1\)
Đặt \(n^2+3=t\)
=> \(A=t\left(t+2\right)+1\)
\(=t^2+2t+1\)
\(=\left(t+1\right)^2\)
=> A là số chính phương
Vậy với mọi số tự nhiên n thì \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\) là số chính phương ( đpcm )