Tam giác ABC có đoạn thẳng nối trung điểm của AB và BC bằng 3,cạnh AB=9 và \(\widehat{ACB}=60^0\).Tính BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: DE đi qua trung điểm của AB và BC
⇒ DE là đường trung bình của tam giác ABC:
\(DE=\dfrac{1}{2}AC\)
\(\Rightarrow AC=DE:\dfrac{1}{2}=3:\dfrac{1}{2}=6\)
Áp dụng định lý cosin ta có:
\(AB^2=AC^2+BC^2-2\cdot AC\cdot BC\cdot cosACB\)
\(\Rightarrow9^2=6^2+BC^2-2\cdot6\cdot BC\cdot cos60^o\)
\(\Rightarrow81=36+BC^2-6BC\)
\(\Rightarrow BC^2-6BC-45=0\)
\(\Delta=\left(-6\right)^2-4\cdot1\cdot\left(-45\right)=216\)
\(\Rightarrow\left[{}\begin{matrix}BC=\dfrac{6+6\sqrt{6}}{2}=3+3\sqrt{6}\left(tm\right)\\BC=\dfrac{6-6\sqrt{6}}{2}=3-3\sqrt{6}\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow BC=3+3\sqrt{6}\)
a, ta có:
BC2=AB2+AC2
thay 152=92+AC2
225=81+AC2
AC2=144
AC=12
Vậy cạnh AC=12cm
Mà AC > AB(vì 12>9)
=>góc ABC > góc ACB(Đ/lí góc đối diện vs cạnh lớn hơn)
b,ta có:BA=DA(vì A là trung điểm của BD)
xét tam giác BCA và tam giácDCA
có:BA=DA(C/m trên)
góc BAC=góc DAC (=900)
AC là cạnh chung
=>tam giác BCA=tam giác DCA(c.g.c)
=>BC=DC(2 cạnh t/ứng)
=>tam giác BDC cân tại C
mk chỉ làm đc thế thôi
ok
hình bn tự vẽ nhé,mk ko biết vẽ hình trên đây:
a) Xét tam giác ABC vuông ở A có:
AB2+AC2=BC2 (đ/l pytago)
=>AC2=BC2-AB2=152-92=144
=>AC=12(cm)
Vì AC>AB (12cm>9cm)
=>^ABC>^ACB (đ/l về góc đối diện.....)
b Vì AB _|_ AC (tam giác ABC vuông tại A)
mà AD là tia đối tia AB=>AD _|_ AC
Xét tam giác ABC vuông tại A và tam giác ADC vuông tại A có:
AC:cạnh chung
AB=AD (A là trung điểm của BD)
=>tam giác ABC=tam giác ADC (2 cạnh góc vuông)
a. Áp dụng định lí Py-ta-go vào tam giác ABC vuông tại A, ta có:
BC2=AB2+AC2
152 = 92 +AC2
AC2 =152-92=144
AC=12 (cm)
Xét tam giác ABC: AC > AB (12 cm >9cm)
=> góc ABC>góc ACB ( quan hệ giữa góc và cạnh đối diện)
b. Ta có: góc BAC + góc DAC = 180* ( hai góc kề bù)
90* + góc DAC = 180*
=> góc DAC =180*-90*=90*
=> tam giác ADC vuông tại A.
Xét tam giác ABC vuông tại A và tam giác ADC vuông tại A, ta có:
AB = AD (A là trung điểm của BD)
AC là cạnh chung
=> tam giác ABC= tam giác ADC ( hai cạnh góc vuông)
=> BC = DC ( hai cạnh tương ứng)
=> tam giác BDC cân tại C.
c. A là trung điểm của BD => CA là đường trung tuyến của tam giác BDC.
K là trung điểm của BC => DK là đường trung tuyến của tam giác BDC.
CA cắt t DK tại M=> M là trọng tâm của tam giác BDC.
=> CM =2/3CA
CM =2/3.12
CM = 8 (cm)
Vậy CM=8 cm
a: \(\widehat{ACB}=90^0-60^0=30^0\)
XétΔABC có \(\widehat{ACB}< \widehat{ABC}\)
nên AB<AC
b: Xét ΔBAC vuông tại A và ΔBDE vuông tại D có
BA=BD
góc ABC chung
Do đó;ΔBAC=ΔBDE
c: Xét ΔBAH vuông tại A và ΔBDH vuông tại D có
BH chung
BA=BD
DO đó:ΔBAH=ΔBDH
SUy ra: \(\widehat{ABH}=\widehat{DBH}\)
hay BH là phân giác của góc ABC