K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2021

\(3x\left(x-2020\right)-x+2020=0\)

\(3x\left(x-2020\right)-\left(x-2020\right)=0\)

\(\left(3x-1\right)\left(x-2020\right)=0\)

\(\orbr{\begin{cases}x=\frac{1}{3}\left(TM\right)\\x=2020\left(TM\right)\end{cases}}\)

\(b,4-9x^2=0\)

\(2^2-\left(3x\right)^2=0\)

\(\left(2-3x\right)\left(2+3x\right)=0\)

\(\orbr{\begin{cases}2-3x=0\\2+3x=0\end{cases}\orbr{\begin{cases}x=\frac{2}{3}\left(TM\right)\\x=-\frac{2}{3}\left(TM\right)\end{cases}}}\)

\(c,x^2-x+\frac{1}{4}=0\)

\(x^2-x+\left(\frac{1}{2}\right)^2=0\)

\(\left(x-\frac{1}{2}\right)^2=0\)

\(x-\frac{1}{2}=0\)

\(x=\frac{1}{2}\)

\(d,x\left(x-3\right)+\left(x-3\right)=0\)

\(\left(x-3\right)\left(x+1\right)=0\)

\(\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\orbr{\begin{cases}x=3\left(TM\right)\\x=-1\left(TM\right)\end{cases}}}\)

\(e,9x\left(x-7\right)-x+7=0\)

\(9x\left(x-7\right)-\left(x-7\right)=0\)

\(\left(9x-1\right)\left(x-7\right)=0\)

\(\orbr{\begin{cases}9x-1=0\\x-7=0\end{cases}\orbr{\begin{cases}x=\frac{1}{9}\left(TM\right)\\x=7\left(TM\right)\end{cases}}}\)

8 tháng 7 2021

a) 3x(x - 2020) - x + 2020 = 0 

<=> 3x(x - 2020) - (x - 2020) = 0

<=> (3x - 1)(x - 2020) = 0

<=> \(\orbr{\begin{cases}3x-1=0\\x-2020=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=2020\end{cases}}\)

Vậy tập nghiệm phương trình là \(S=\left\{\frac{1}{3};2020\right\}\)

b) \(4-9x^2=0\)

<=> \(\left(2-3x\right)\left(2+3x\right)=0\)

<=> \(\orbr{\begin{cases}2-3x=0\\2+3x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{2}{3}\end{cases}}\)

Vậy \(x\in\left\{\frac{2}{3};-\frac{2}{3}\right\}\)là nghiệm phương trình 

c) \(x^2-x+\frac{1}{4}=0\)

<=> \(\left(x-\frac{1}{2}\right)^2=0\)

<=> \(x-\frac{1}{2}=0\)

<=> \(x=\frac{1}{2}\)

d) x(x - 3) + (x - 3) = 0

<=> (x + 1)(x - 3) = 0

<=> \(\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)

Vậy \(x\in\left\{-1;3\right\}\)là nghiệm phương trình

e) 9x(x - 7) - x + 7 = 0

<=> (9x - 1)(x - 7) = 0

<=> \(\orbr{\begin{cases}9x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{9}\\x=7\end{cases}}\)

Vậy \(x\in\left\{\frac{1}{9};7\right\}\)là nghiệm phương trình

2 tháng 8 2019

a) (x - 1)3 - 1 = 0

<=> (x - 1)3 = 0 + 1

<=> (x - 1)3 = 1

<=> (x - 1)3 = 13

<=> x - 1 = 1

<=> x = 1 + 1

<=> x = 2

=> x = 2

b) (x - 4)2019 = 1

<=> (x - 4)2019 = 12019

<=> x - 4 = 1

<=> x = 1 + 4

<=> x = 5

=> x = 5

c) (x - 2019)2020 = 0

<=> (x - 2019)2020 = 02020

<=> x - 2019 = 0

<=> x = 0 + 2019

<=> x = 2019

=> x = 2019

d) (x - 1)2 = (x - 1)3

<=> x2 - 2x + 1 = x3 - 2x2 + x - x2 + 2x - 1

<=> x2 - 2x + 1 = x3 - 3x2 + 3 - 1

<=> x2 - 2x + 1 - x3 + 3x2 - 3 + 1 = 0

<=> 4x2 - 5x + 2 - x3 = 0

<=> (-x2 + 3x - 2)(x - 1) = 0

<=> (x2 - 3x + 2)(x - 1) = 0

<=> (x - 2)(x - 1)(x - 1) = 0

<=> x - 2 = 0 hoặc x - 1 = 0

       x = 0 + 2         x = 0 + 1

       x = 2               x = 1

=> x = 1 hoặc x = 2

2 tháng 10 2023

Ta có ( x - 3 )2 + ( y - 4 )2 + ( x2 - xz )2020 = 0

Vì ( x - 3 )2 ≥ 0 với ∀x

    ( y - 4 )2 ≥ 0 với ∀y

    ( x2 - xz )2020 ≥ 0 với ∀x; ∀z

⇒ ( x - 3 )2 + ( y - 4 )2 + ( x2 - xz )2020 ≥ 0

Dấu " = " xảy ra khi

\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-4\right)^2=0\\\left(x^2-xz\right)^{2020}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-3=0\\y-4=0\\x^2-xz=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=4\\z=3\end{matrix}\right.\)

Vậy x = 3; y = 4; z = 3

2 tháng 10 2023

em cảm ơn

 

20 tháng 8 2021

1, \(2x^3-50x=0\Leftrightarrow2x\left(x^2-25\right)=0\Leftrightarrow x=0;x=\pm5\)

2, \(5x^2-4\left(x^2-2x+1\right)-5=0\)

\(\Leftrightarrow5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left[5\left(x+1\right)-4\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+9\right)=0\Leftrightarrow x=-9;x=1\)

3, \(6x\left(x-2\right)=x-2\Leftrightarrow\left(6x-1\right)\left(x-2\right)=0\Leftrightarrow x=\frac{1}{6};x=2\)

4, \(7\left(x-2020\right)^2-x+2020=0\Leftrightarrow7\left(x-2020\right)^2-\left(x-2020\right)=0\)

\(\Leftrightarrow\left(x-2020\right)\left[7\left(x-2020\right)-1\right]=0\Leftrightarrow x=2020;x=\frac{14141}{7}\)

5, \(x^2-10x=-25\Leftrightarrow x^2-10x+25=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x=5\)

6, \(x^2-2x-3=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\Leftrightarrow x=-1;x=3\)

\(1,\)

\(2x^3-50x=0\)

\(\Leftrightarrow2x\left(x^2-25\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-25=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)

\(2,\)

\(5x^2-4\left(x^2-2x+1\right)-5=0\)

\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)

\(\Leftrightarrow x^2+8x-9=0\)

\(\Leftrightarrow x^2-x+9x-9=0\)

\(\Leftrightarrow x\left(x-1\right)+9\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+9=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-9\\x=1\end{cases}}\)

\(3,\)

\(6x\left(x-2\right)=x-2\)

\(\Leftrightarrow6x\left(x-2\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(6x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{6}\end{cases}}\)

\(4,\)

\(7\left(x-2020\right)^2-x+2020=0\)

\(\Leftrightarrow7\left(x-2020\right)^2-\left(x-2020\right)=0\)

\(\Leftrightarrow\left(x-2020\right)[7\left(x-2020\right)-1]=0\)

\(\Leftrightarrow\left(x-2020\right)[7x-14141]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2020\\7x=14141\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=\frac{14141}{7}\end{cases}}\)

\(5,\)

\(x^2-10x=-25\)

\(\Leftrightarrow x^2-10x+25=0\)

\(\Leftrightarrow\left(x-5\right)^2=0\)

\(\Leftrightarrow x-5=0\)

\(\Leftrightarrow x=5\)

\(6,\)

\(x^2-2x-3=0\)

\(\Leftrightarrow x^2-3x+x-3=0\)

\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

9 tháng 1 2018

a ) 4 . ( x2 + 1 ) = 0

            x2 + 1   = 0 : 4

            x2 + 1   = 0

                   x2  = 0 - 1

                   x2  = - 1

                   x2  = - 12 => x = - 1

Vậy x = - 1

9 tháng 1 2018

Thế còn phần b

2 tháng 11 2021

Bài 1:

a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)

\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)

b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)

c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)

d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)

e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)

f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)

Bài 2:

a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

10 tháng 10 2021

\(a,\Rightarrow x^2+4x+4+x^2-2x+1+x^2-9-3x^2=-8\\ \Rightarrow2x=-4\\ \Rightarrow x=-2\\ b,\Rightarrow2021x\left(x-2020\right)-\left(x-2020\right)=0\\ \Rightarrow\left(2021x-1\right)\left(x-2020\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2020=0\\2021x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2021}\end{matrix}\right.\)

12 tháng 10 2021

a) \(\Rightarrow x^2+4x+4+x^2-2x+1+x^2-9-3x^2=-8\)

\(\Rightarrow2x=-4\Rightarrow x=-2\)

b) \(\Rightarrow2021x\left(x-2020\right)-\left(x-2020\right)=0\)

\(\Rightarrow\left(x-2020\right)\left(2021x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2021}\end{matrix}\right.\)