Cho tam giác ABC vuông tại A , vẽ tia phân giác BM của góc B ( M thuộc AC ) . Trên BC xác định điểm N sao cho BA = BN
a , CMR tam giác ABM = tam giác NBM
b, AN cắt BM tại H . CMR HA=HN
c, Từ C kẻ tia Cy vuông góc với tia BM tại k . CMR CK // HN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAM và ΔBNM có
BA=BN
\(\widehat{ABM}=\widehat{NBM}\)
BM chung
Do đó: ΔBAM=ΔBNM
b: Ta có: ΔBAM=ΔBNM
=>MA=MN
=>M nằm trên đường trung trực của AN(1)
ta có: BA=BN
=>B nằm trên đường trung trực của AN(2)
Từ (1) và (2) suy ra BM là đường trung trực của AN
=>BM\(\perp\)AN tại H và H là trung điểm của AN
vì H là trung điểm của AN
nên HA=HN
c: Ta có: CK\(\perp\)BM
HN\(\perp\)BM
Do đó: CK//HN
a) Ta có: $\widehat{ABM} = \widehat{NBM}$ (vì $BN = BA$) và $\widehat{BMA} = \widehat{NMB}$ (vì BM là phân giác của $\widehat{B}$). Vậy tam giác $ABM$ và tam giác $NBM$ có hai góc bằng nhau nên chúng đồng dạng.
b) Ta có $BN = BA$, suy ra tam giác $ABN$ đều, do đó $\widehat{NAB} = 60^\circ$. Ta có thể tính được $\widehat{BAC} = 90^\circ - \widehat{CAB} = 90^\circ - \widehat{ABN} = 30^\circ$. Khi đó, $\widehat{AMC} = \widehat{A} + \widehat{BAC} = 90^\circ + 30^\circ = 120^\circ$.
Do đó, tam giác $AMC$ là tam giác cân tại $A$ vì $\widehat{AMC} = 120^\circ = 2\cdot \widehat{ABC}$ (do tam giác $ABC$ vuông tại $A$). Khi đó, $AM = MC$.
c) Ta có $\widehat{CAB} = 30^\circ$, nên tia đối của $AB$ là tia $AH$ cũng là phân giác của $\widehat{A}$. Gọi $E'$ là trên $AH$ sao cho $AE' = CN$. Khi đó, ta có thể chứng minh $E'$ trùng với $E$, tức là $E'$ nằm trên đoạn thẳng $CE$ và $CE' = EI$.
Đặt $x = BE = BC$. Ta có $AN = AB = BN = x$, do đó tam giác $ABN$ đều và $\widehat{ANB} = 60^\circ$. Khi đó, ta có $\widehat{A} + \widehat{M} + \widehat{N} = 180^\circ$, hay $\widehat{M} + \widehat{N} = 90^\circ$.
Ta có $\dfrac{AE'}{CE'} = \dfrac{AN}{CN} = 1$, do đó $AE' = CE' = x$. Khi đó, tam giác $ACE'$ đều và $\widehat{ACE'} = 60^\circ$. Ta có thể tính được $\widehat{C} = 180^\circ - \widehat{A} - \widehat{B} = 60^\circ$, nên tam giác $ABC$ đều và $AC = x$.
Do $AM = MC$, ta có $\widehat{MAC} = \dfrac{180^\circ - \widehat{M}}{2} = \dfrac{180^\circ - \widehat{N}}{2}$. Ta cũng có $\widehat{B} + \widehat{N} + \widehat{C} = 180^\circ$, hay $\widehat{N} = 180^\circ - \widehat{A} - \widehat{B} - \widehat{B} - \widehat{C}$
Do đó, $\widehat{N} = 180^\circ - \widehat{A} - 90^\circ - \widehat{C} = 90^\circ - \widehat{B}$
Vậy $\widehat{MAC} = \dfrac{180^\circ - \widehat{M}}{2} = \dfrac{180^\circ - \widehat{N}}{2} = \dfrac{\widehat{B}}{2}$
Suy ra tam giác ABM và NBM có cùng một góc ở đỉnh M, và hai góc còn lại lần lượt bằng $\dfrac{\widehat{A}}{2}$ và $\dfrac{\widehat{C}}{2}$, nên chúng đồng dạng. Do đó, ta có $ABM = NBM$.
Về phần b, do $AM = MC$, ta có $AMC$ là tam giác cân tại $M$, hay $BM$ là đường trung trực của $AC$. Vì $BN$ là đường phân giác của $\widehat{B}$, nên ta có $BM$ cũng là đường phân giác của tam giác $\triangle ABC$. Do đó, $BM$ là đường phân giác của $\widehat{BAC}$, hay $\widehat{BAM} = \widehat{MAC} = \dfrac{\widehat{BAC}}{2}$. Vậy $\widehat{BAM} + \widehat{ABM} = \dfrac{\widehat{BAC}}{2} + \dfrac{\widehat{A}}{2} = 90^\circ$, hay tam giác $\triangle ABM$ là tam giác vuông tại $B$.
Về phần c, vì $AE = CN$, ta có tam giác $\triangle AEC$ là tam giác cân tại $E$, nên $EI$ là đường trung trực của $AC$. Do đó, $\widehat{BIM} = \widehat{BIE} + \widehat{EIM} = \widehat{BCM} + \widehat{CAM} = \dfrac{\widehat{B}}{2} + \dfrac{\widehat{C}}{2}$. Tuy nhiên, ta đã chứng minh được $\widehat{MAC} = \dfrac{\widehat{B}}{2}$, nên $\widehat{BIM} = \widehat{MAC} + \dfrac{\widehat{C}}{2}$. Do đó, $B, M, I$ thẳng hàng.
a, Xét △ABM và △NBM
Có: AB = NB (gt)
ABM = NBM (gt)
BM là cạnh chung
=> △ABM = △NBM (c.g.c)
b, Xét △NBH và △ABH
Có: NB = AB (gt)
NBH = ABH (gt)
BH là cạnh chung
=> △NBH = △ABH (c.g.c)
=> NH = AH (2 cạnh tương ứng)
c, Vì △NBH = △ABH (cmt)
=> NHB = AHB (2 góc tương ứng)
Mà NHB + AHB = 180o (2 góc kề bù)
=> NHB = AHB = 180o : 2 = 90o
=> HB ⊥ AN => BM ⊥ HN
Mà CK ⊥ BM (gt)
=> CK // HN (từ vuông góc đến song song)
Tự vẽ hình nhé !
a) Xét tam giác ABM và tam giác HBM có:
\(\hept{\begin{cases}BA=BM\left(gt\right)\\BM:chung\\gocB1=gocB2\left(gt\right)\end{cases}}\)
=> tam giác ABM = tam giác HBM (c.g.c)
Mấy câu sau N ở đâu?
Hình bạn tự vẽ nha!
a) Xét 2 \(\Delta\) \(ABM\) và \(NBM\) có:
\(AB=NB\left(gt\right)\)
\(\widehat{ABM}=\widehat{NBM}\) (vì \(BM\) là tia phân giác của \(\widehat{B}\))
Cạnh BM chung
=> \(\Delta ABM=\Delta NBM\left(c-g-c\right).\)
b) Ta có: \(\widehat{ABM}=\widehat{NBM}\) (vì \(BM\) là tia phân giác của \(\widehat{B}\))
=> \(\widehat{ABH}=\widehat{NBH}.\)
Xét 2 \(\Delta\) \(ABH\) và \(NBH\) có:
\(AB=NB\left(gt\right)\)
\(\widehat{ABH}=\widehat{NBH}\left(cmt\right)\)
Cạnh BH chung
=> \(\Delta ABH=\Delta NBH\left(c-g-c\right)\)
=> \(HA=HN\) (2 cạnh tương ứng).
c) Vì \(HA=HN\left(cmt\right)\)
=> H là trung điểm của \(AN.\)
=> \(BH\) là đường trung tuyến của \(\Delta ABN.\)
Xét \(\Delta ABN\) có:
\(AB=NB\left(gt\right)\)
=> \(\Delta ABN\) cân tại B.
Có \(BH\) là đường trung tuyến (cmt).
=> \(BH\) đồng thời là đường cao của \(\Delta ABN.\)
=> \(BH\perp AN.\)
=> \(HN\perp BH\)
Hay \(HN\perp BM\) (1).
Lại có: \(Cy\perp BM\left(gt\right)\)
=> \(CK\perp BM\) (2).
Từ (1) và (2) => \(CK\) // \(HN\) (từ vuông góc đến song song) (đpcm).
Chúc bạn học tốt!
Xét tam giác ABM và tam giác NBM có:
AB = BN
góc ABM = góc NBM
BM chung
Nên: tam giác ABM = tam giác NBM
b, Ta có: AB = BN
=> Tam giác ABN là tam giác cân tai A
Xét tam giác cân ABN có:
BH là đường phân giác
=> BH đồng thời là đường trung tuyến
=> H là trung điểm của AN
=> HA = HN
c, Xét: tam giác cân ABN có:
BH là đường trung tuyến
=> BH đồng thời là đường cao
=> BH ⊥ AN
hay: HN ⊥ BM tại H
mặt khác ta có: CK ⊥ BM tại K
Nê: HN//CK (từ vuông góc đến //)
Cậu xem lại bài nhé!!!