K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AKCI có

AK//CI

AI//CK

Do đó: AKCI là hình bình hành

a:

AK//BD

N\(\in\)BD

Do đó: AK//BN

Xét ΔMAK và ΔMBN có

\(\widehat{MAK}=\widehat{MBN}\)(hai góc so le trong, AK//BN)

MA=MB

\(\widehat{AMK}=\widehat{BMN}\)

Do đó: ΔMAK=ΔMBN

=>AK=BN

Xét tứ giác AKBN có

AK//BN

AK=BN

Do đó: AKBN là hình bình hành

b: ABCD là hình chữ nhật

=>AC cắt BD tại trung điểm của mỗi đường và AC=BD

mà AC cắt BD tại O

nên O là trung điểm chung của AC và BD

Xét ΔBAC có

CM,BO là các đường trung tuyến

CM cắt BO tại N

Do đó: N là trọng tâm của ΔBAC

Xét ΔABC có

N là trọng tâm của ΔBAC

CM là đường trung tuyến ứng với cạnh AB

Do đó: \(CN=2NM\)(1)

Ta có: AKBN là hình bình hành

=>AB cắt KN tại trung điểm của mỗi đường

mà M là trung điểm của AB

nên M là trung điểm của KN

=>KN=2MN(2)

Từ (1) và (2) suy ra CN=NK

mà C,N,K thẳng hàng

nên N là trung điểm của CK

c: Xét ΔBAC có

BO là đường trung tuyến ứng với cạnh AC

N là trọng tâm của ΔABC

Do đó: \(BN=\dfrac{2}{3}BO\) và \(ON=\dfrac{1}{3}BO\)

=>\(\dfrac{BN}{NO}=\dfrac{\dfrac{2}{3}BO}{\dfrac{1}{3}BO}=\dfrac{2}{3}:\dfrac{1}{3}=\dfrac{2}{3}\cdot3=2\)

=>BN=2NO

O là trung điểm của BD

=>BO=DO=BD/2

\(BN=\dfrac{2}{3}BO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot BD=\dfrac{1}{3}BD\)

\(NO=\dfrac{1}{3}BO=\dfrac{1}{3}\cdot\dfrac{1}{2}\cdot BD=\dfrac{1}{6}BD\)

DO+ON=DN

=>\(\dfrac{1}{2}BD+\dfrac{1}{6}BD=DN\)

=>\(DN=\dfrac{2}{3}BD\)

\(\dfrac{DO}{DN}=\dfrac{\dfrac{1}{2}BD}{\dfrac{2}{3}BD}=\dfrac{1}{2}:\dfrac{2}{3}=\dfrac{3}{4}\)

Xét ΔDNC có OE//NC

nên \(\dfrac{DE}{DC}=\dfrac{DO}{DN}=\dfrac{3}{4}\)

13 tháng 12 2023

Sao góc KMA = góc BMN  vậy ạ

 

19 tháng 12 2023

Có thể vẽ hình cho em được không ạ 

a: Xét tứ giác AKCI có 

AK//CI

AI//CK

Do đó: AKCI là hình bình hành

5 tháng 9 2023

a] Để chứng minh AF // BD, ta cần chứng minh tỉ số đồng dạng giữa các cặp cạnh tương ứng của hai tam giác ACF và BDE. Ta có:

AC/BD = AD/BE (vì AF // BD) AC/AD = BE/BD (vì AM // BD và BN // BD)

Từ hai tỉ số trên, ta có:

AC/AD = BE/BD

Vậy, ta đã chứng minh được AF // BD.

b] Để chứng minh E là trung điểm CF, ta cần chứng minh CE = EF và CF // AB. Ta có:

CE = AM (vì CE // AM và AC // BD) EF = BN (vì EF // BN và AC // BD)

Vậy, ta đã chứng minh được E là trung điểm CF.