K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2021

a: Xét ΔABC có

E là trung điểm của AB

F là trung điểm của AC

Do đó: EF là đường trung bình của ΔBAC

Suy ra: EF//BC

hay BEFC là hình thang

a) Xét ΔABC có 

M là trung điểm của AB(gt)

N là trung điểm của AC(gt)

Do đó: NM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒MN//BC và \(MN=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét tứ giác MNCB có MN//BC(cmt)

nên MNCB là hình thang có hai đáy là MN và BC(Định nghĩa hình thang)

b) Ta có: NM=NE(gt)

mà M,N,E thẳng hàng

nên N là trung điểm của ME

hay \(MN=\dfrac{ME}{2}\)(2)

Từ (1) và (2) suy ra ME=BC

Xét tứ giác MECB có 

ME//BC(MN//BC, E∈MN)

ME=BC(cmt)

Do đó: MECB là hình bình hành(Dấu hiệu nhận biết hình bình hành)

c) Ta có: ME//BC(MN//BC, E∈MN)

nên \(\widehat{NEF}=\widehat{CBF}\)(hai góc so le trong)

Xét ΔNEF và ΔCBF có 

\(\widehat{NEF}=\widehat{CBF}\)(cmt)

\(\widehat{EFN}=\widehat{BFC}\)(hai góc đối đỉnh)

Do đó: ΔNEF∼ΔCBF(g-g)

\(\dfrac{NE}{CB}=\dfrac{NF}{CF}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\dfrac{NF}{CF}=\dfrac{1}{2}\)

hay \(CF=2\cdot NF\)

Ta có: CF+NF=NC(F nằm giữa N và C)

\(\Leftrightarrow2\cdot NF+NF=NC\)

\(\Leftrightarrow NC=2\cdot NF\)

mà \(AC=2\cdot NC\)(N là trung điểm của AC)

nên \(AC=6\cdot NF\)(đpcm)

d) Hình bình hành MECB trở thành hình vuông khi \(\left\{{}\begin{matrix}\widehat{MBC}=90^0\\MB=BC\end{matrix}\right.\)

hay \(\left\{{}\begin{matrix}\widehat{ABC}=90^0\\AB=2\cdot BC\end{matrix}\right.\)

Vậy: Khi ΔABC có thêm điều kiện \(\left\{{}\begin{matrix}\widehat{ABC}=90^0\\AB=2\cdot BC\end{matrix}\right.\) thì hình bình hành MECB trở thành hình vuông

loading...  loading...  loading...  

18 tháng 10 2021

a, Vì EF là đường trung bình tg ABC nên EF//BC

Do đó BEFC là hình thang

Mà \(\widehat{ABC}=\widehat{ACB}\) (tg ABC cân tại A)

Vậy BEFC là hình thang cân

b, Ta có EF là đtb tg ABC nên \(EF=\dfrac{1}{2}BC\)

Mà \(EF=\dfrac{1}{2}MF\) (E là trung điểm MF) nên \(BC=MF\)

Mà EF//BC nên MF//BC

Do đó BMFC là hbh

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC

hay MNCB là hình thang

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC

hay MNCB là hình thang