K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2019

\(f\left(x\right)=x^6-10x^5+10x^4-10x^3+10x^2-10x+10\)

\(f\left(x\right)=x^5\left(x-10\right)+x^3\left(x-10\right)+x\left(x-10\right)+10\)

\(f\left(x\right)=\left(x-10\right)\left(x^5+x^3+x\right)+10\)

\(f\left(x\right)=x\left(x-10\right)\left(x^4+x^2+1\right)+10\)

\(\Rightarrow f\left(9\right)=9.\left(9-10\right)\left(9^4+9^2+1\right)+10\)

\(\Leftrightarrow f\left(9\right)=9.\left(-1\right).\left(6643\right)+10\)

\(\Leftrightarrow f\left(9\right)=-59777\)

P/s : làm cho zui thôi nha , sai đừng đáp đá 

21 tháng 12 2019

\(x=9\)\(\Rightarrow x+1=10\)

\(\Rightarrow f\left(9\right)=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\)

               \(=x^6-x^6-x^5+x^5+.......-x+x+1=1\)

AH
Akai Haruma
Giáo viên
9 tháng 10 2023

Lời giải:

Vì $x=9$ nên $x-9=0$
Ta có:

$F=(x^{2017}-9x^{2016})-(x^{2016}-9x^{2015})+(x^{2015}-9x^{2014})-....-(x^2-9x)+x-10$

$=x^{2016}(x-9)-x^{2015}(x-9)+x^{2014}(x-9)-....-x(x-9)+x-10$

$=x^{2016}.0-x^{2015}.0+x^{2014}.0-...-x.0+x-10$

$=x-10=9-10=-1$

13 tháng 7 2016

e) \(E=x^5-15x^4+16x^3-29x^2+13x\) tại x = 14

\(E=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+x\left(x-1\right)\)

\(E=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)

\(E=-x\)

\(E=-14\)

13 tháng 7 2016

d)  \(D=x^3-30x^2-31+1\) tại x = 31

\(D=31^3-30.31^2-31+1\)

\(D=31^2\left(31-30-1\right)+1\)

\(D=0+1\)

\(D=1\)

 

27 tháng 5 2017

\(B=x^5-15x^4+16x^3-29x^2+13x\)

\(=x^5-14x^4-x^4+14x^3+2x^3-28x^2-x^2+14x-x+14-14\)

\(=x^4\left(x-14\right)-x^3\left(x-14\right)+2x^2\left(x-14\right)-x\left(x-14\right)-\left(x-14\right)-14\)

\(=\left(x^4-x^3+2x^2-x-1\right)\left(x-14\right)-14\)

Thay x = 14 => B = -14

Vậy...

phần còn lại tách ra làm tương tự nhé

3 tháng 3 2018

cu tao to

a) Ta có: \(P\left(x\right)=x^7-80x^6+80x^5-80x^4+...+80x+15\)

\(=x^7-x^6\left(x+1\right)+x^5\left(x+1\right)-...+x\left(x+1\right)+15\)

\(=x^7-x^7-x^6+x^6+x^5-...+x^2+x+15\)

\(=x+15\)

Thay x=79 vào biểu thức \(P\left(x\right)=x+15\), ta được:

\(P\left(79\right)=79+15=94\)

5 tháng 8 2020

tớ cảm ơn, nhưng cho tớ hỏi sao lại dùng (x+1) thế ạ ?

1 tháng 3 2023

\(G=x^4+10x^3+10x^2+10x+10\)
\(=x^4+10\left(x^3+x^2+x+1\right)\)
\(=\left(-9^4\right)+10\left[\left(-9\right)^3+\left(-9\right)^2+-9+1\right]\)
\(=6561+10\cdot-656\)
\(=6561-6560\)
\(=1\)

1 tháng 3 2023

Thay `x=-9` vào biểu thức G:

`G=(-9)^4+10.(-9)^3+10.(-9)^2+10.(-9)+10`

`=6561-7290+810-90+10`

`=1`

27 tháng 10 2023

x=9

=>x+1=10

\(A=x^{10}-10x^9+10x^8-...+10x^2-10x+1\)

\(=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-...+x^2\left(x+1\right)-x\left(x+1\right)+1\)

\(=x^{10}-x^{10}-x^9+x^8+...+x^3+x^2-x^2-x+1\)

=-x+1

=-9+1=-8

18 tháng 8 2017

x=9

\(9^{14}-10.9^{13}+10.9^{12}-10.9^{11}+..+10.9^2-10.9+10\)

\(9^{14}-\left(9+1\right).9^{13}+\left(9+1\right).9^{12}+..+\left(9+1\right).9^2-\left(9+1\right)9+10\)

\(9^{14}-9^{14}-9^{13}+9^{13}+9^{12}-..+9^3+9^2-9^2-9+10=1\)

Vậy......

18 tháng 8 2017

Cảm ơn

30 tháng 7 2018

D = \(x^{10}-25x^9+25x^8-25x^7+...+25x^2-25x+25\)với x = 24

thiếu 1 câu

31 tháng 7 2018

A= x5−5x4+5x3−5x2+5x−1x5−5x4+5x3−5x2+5x−1 với x = 4

= x5−(x+1)x4+(x+1)x3−(x+1)x2+(x+1)x−1

= x5−x5−x4+x4+x3−x3+x2−x2+x−1

=x−1=4−1=3

Tương tự với các câu B,C,D