Tìm x,y thuộc z thỏa mãn:
x2+y2+6y+8=0
Mn giải kĩ giùm mik nhé 👌 cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+3y^2-4x+6y+7=0\\ \Leftrightarrow\left(x^2-4x+4\right)+\left(3y^2+6y+3\right)=0\\ \Leftrightarrow\left(x-2\right)^2+3\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
\(3x^2+y^2+10x-2xy+26=0\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(2x^2+10x+\dfrac{25}{8}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x^2+2\cdot\dfrac{5}{2}x+\dfrac{25}{4}\right)+\dfrac{183}{8}=0\\ \Leftrightarrow\left(x-y\right)^2+2\left(x+\dfrac{5}{2}\right)^2+\dfrac{183}{8}=0\\ \Leftrightarrow x,y\in\varnothing\)
Sửa đề: \(3x^2+6y^2-12x-20y+40=0\)
\(\Leftrightarrow\left(3x^2-12x+12\right)+\left(6y^2-20y+\dfrac{50}{3}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y^2-2\cdot\dfrac{5}{3}y+\dfrac{25}{9}\right)+\dfrac{34}{3}=0\\ \Leftrightarrow3\left(x-2\right)^2+6\left(y-\dfrac{5}{3}\right)^2+\dfrac{34}{3}=0\\ \Leftrightarrow x,y\in\varnothing\)
\(2\left(x^2+y^2\right)=\left(x+y\right)^2\\ \Leftrightarrow2x^2+2y^2=x^2+2xy+y^2\\ \Leftrightarrow x^2-2xy+y^2=0\\ \Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x-y=0\Leftrightarrow x=y\)
Từ gt => 2(x^2+y^2+z^2)=2(xy+yz+xz)
<=> (x-y)^2 + (y-z)^2 + (z-x)^2=0
<=> x=y=z
=> 3x^2014=3
=>x=y=z=1
=>P= 1^25+1^4+1^2015 = 3
\(\frac{x}{5}=\frac{y}{6}\: \Leftrightarrow x=\frac{5}{6}y .\)
\(\frac{y}{8}=\frac{z}{11}\)\(\Leftrightarrow z=\frac{11}{8}y\)
Có: x+y-z=44 \(\Leftrightarrow\frac{5}{6}y+y-\frac{11}{8}y=44\)\(\Leftrightarrow\frac{11}{24}y=44\)
\(\Leftrightarrow y=96\)\(\Rightarrow\hept{\begin{cases}x=80\\z=132\end{cases}}\)
A=x-y-2z=80-96-2.132=-280
Bạn tham khảo nha
x/y=8/3 =>x/8=y/3, z/x=1/2 =>x/2=z
=>x/16=y/6=z/8=x+y-2z/16+6-16=3/2=>x=3/2*16=24;y=3/2*6=9;z=3/2*8=12
Hìk như ko có cách đổi tên trên hoc24 đâu bn à
Ta có : x2 + y2 + 6y + 8 = 0
x2 + ( y2 + 6y + 9 ) - 1 = 0
x2 + (y + 3)2 = 1 (1)
Vì x2 >= 0 với mọi x; (y + 3)2 >= 0 với mọi y nên từ (1) => x2 =< 1
Mà x2 >= 0; x2 thuộc N* ( vì x thuộc z)
=> x2 = 0 hoặc x2 = 1.
+ với x2 = 0 <=> x = 0 và (y+ 3)2 = 1
<=> y = -2 hoặc y = -4
+ với x2 = 1 <=> x = 1 hoặc x = -1
Khi đó (y+3)2 = 0 <=> y + 3 =0 <=> y = -3
Vậy (x;y) thuộc (0;-2) , (0;-4) , (1;-3) , (-1;-3).