K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Lời giải:

a.

$ab=ƯCLN(a,b).BCNN(a,b)$

$\Rightarrow 9000=ƯCLN(a,b).900$

$\Rightarrow ƯCLN(a,b)=10$.

Đặt $a=10x, b=10y$ thì $x,y$ là 2 số tự nhiên nguyên tố cùng nhau.

$BCNN(a,b)=10xy=900$

$\Rightarrow xy=90$

Vì $(x,y)=1$ nên ta có các cặp $(x,y)$ sau thỏa mãn:

$(x,y)=(1,90), (2,45), (5,18), (9,10), (10,9), (18,5), (45,2), (90,1)$

Từ đây bạn dễ dàng tìm được $a,b$

b.

$ƯCLN(a,b)=ab:BCNN(a,b)=360:60=6$

Đặt $a=6x, b=6y$ với $x,y$ là stn nguyên tố cùng nhau.

$\Rightarrow BCNN(a,b)=6xy=60$

$\Rightarrow xy=10$

Do $x,y$ nguyên tố cùng nhau nên:

$(x,y)=(1,10), (2,5), (5,2), (10,1)$

Từ đây dễ dàng tìm được $a,b$ 

1 tháng 12 2023

ko biet

1 tháng 12 2023
Giả sử a và b là hai số nguyên dương thỏa mãn a * b = 360 và BCNN(a, b) = 60. Đầu tiên, ta phân tích 360 thành các thừa số nguyên tố: 360 = 2^3 * 3^2 * 5. BCNN(a, b) là bội chung nhỏ nhất của a và b, tức là BCNN(a, b) phải chia hết cho cả a và b. Do đó, a và b cũng phải có các thừa số nguyên tố là 2, 3 và 5. Ta có thể chia 2^3, 3^2 và 5 thành hai phần: một phần chứa các thừa số nguyên tố chung của a và b, và một phần chứa các thừa số nguyên tố chỉ xuất hiện trong a hoặc b. Vì BCNN(a, b) = 60, nên phần chứa các thừa số nguyên tố chung của a và b phải là 2^2 * 3 * 5 = 60. Phần còn lại chứa các thừa số nguyên tố chỉ xuất hiện trong a hoặc b là 2 * 3 = 6. Vậy, ta có thể chọn a = 60 * 6 = 360 và b = 60 * 6 = 360. Do đó, các số nguyên a và b thỏa mãn a * b = 360 và BCNN(a, b) = 60 là a = 360 và b = 360.  
29 tháng 10 2017

ƯCLN(a;b)=4500:300=15=>a=15m và b=15n

m,n thuộc N* và ƯCLN (m,n)=1

ta có a.b=4500 hay 15m.15n=4500

                               225(m.n)=4500

                                m.n       =20

m        1                 4

n        20                5

=>a            15               60

    b             300             75

vậy a=15 ,b=300 hoặc a=60,b=75 (vì a<b)

4 tháng 11 2017

Ta có :

\(\left(a,b\right).\left[a,b\right]=a.b=\left(a,b\right).60=360\)

\(\Leftrightarrow\left(a,b\right)=6\)

\(\left(a,b\right)=6\Leftrightarrow\left\{{}\begin{matrix}a=6a_1\\b=6b_2\end{matrix}\right.\) \(\left(\left(a_1;b_1\right)=1\right)\)

Lại có :

\(a.b=360\)

\(\Leftrightarrow6a_1.6b_1=360\)

\(\Leftrightarrow36.a_1.b_1=360\)

\(\Leftrightarrow a_1.b_1=10\)

Ta có bảng :

\(a\) \(a_1\) \(b_1\) \(b\) \(đk\) \(a,b\in N\)
\(6\) \(1\) \(10\) \(60\) \(tm\)
\(60\) \(10\)
\(1\)
\(6\) \(tm\)
\(12\) \(2\) \(5\) \(30\) \(tm\)
\(30\) \(5\) \(2\) \(12\) \(tm\)

Vậy ..

17 tháng 7 2016

Một số tự nhiên a khi chia cho 7 dư 4, chia cho 9 dư 6 .Tìm số dư khi chia a cho 63

30 tháng 5 2017

Ta có: ab = [a,b] . (a,b)

=> 2400 = 120 . (a,b) 

=> (a,b) = 2400 : 120

=> (a,b) = 20

Vì (a,b) = 20 nên a = 20x ; b = 20y với (x,y) = 1

Lại có: ab = 2400 

=> 20x . 20y = 2400

=> (20.20)(x.y) = 2400

=> 400xy = 2400

=> xy = 2400 : 400

=> xy = 6

Ta có bảng:

x63
y12
a12060
b2040

Vậy các cặp (a;b) thỏa mãn là (120;20) ; (60;40)

30 tháng 5 2017

a = 60

b = 40

40 . 60 = 2400

BCNN ( 40;60 ) = 120