Một đám đất hình chữ nhật có chiều dài 52 m chiều rộng 36 m Người ta muốn chia đám đất đó thành những khoảng hình vuông bằng nhau để trồng các loại rau tính độ dài lớn nhất của cạnh hình vuông (cạnh là số nguyên)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi x là cạnh hình vuông lớn nhất là
theo đề bài ta có
để thõa mãn đề bài
52:x;36:x với x là số lớn nhất (1)
=>x là ước chung lớn nhất của 52;36
52=2^2.13
36=2^2^.3^3
=> ƯCLN(52:36)=2^2=4
vậy cách chia có độ dài là 4 m là số lớn nhất
độ dài lớn nhất của cạnh hình vuông chính là ƯCLN(52,36)=4m
Lời giải:
Giả sử người ta chia mảnh đất thành hình vuông có cạnh $n$ (m).
$n$ chia hết cho $90,150$ nên $n$ là ƯC$(90,150)$
Để cạnh hình vuông lớn nhất thì $n$ là ƯCLN$(90,150)$
$\Rightarrow n=30$ (m)
Độ dài lớn nhất của cạnh hình vuông là ƯCLN(52; 36)
Ta có:
\(52=2^2.13\)
\(36=2^2.3^2\)
ƯCLN(52; 36) = 22 = 4
Vậy độ dài lớn nhất của cạnh hình vuông là 4 m
Lời giải:
Để chia đám đất thành hình vuông bằng nhau, mà đảm bảo cạnh hình vuông lớn nhất, thì độ dài cạnh hình vuông đó phải là ước chung của $52,36$
Ta có:
$52=2^2.13$
$36=2^2.3^2$
$\Rightarrow$ độ dài cạnh hình vuông lớn nhất là: $2^2=4$ (m)
Câu hỏi của Nguyễn Phương Thảo 2008 - Toán lớp 6 - Học toán với OnlineMath
Gọi a là độ dài lớn nhất của cạnh hình vuông ( a\(\inℕ^∗\), m )
Người ta muốn chia đám đất thành những khoảng hình vuông bằng nhau nên suy ra:
52 \(⋮\)a và 36\(⋮\)a
=> a \(\in\)Ư( 52; 36 )
Mà a lớn nhất
=> a = UCLN ( 52; 36)
Có: 52 = 2\(^2\).13 và 36 = 2\(^2\).3\(^2\)
=> a = 2\(^2\)=4 ( thỏa mãn)
Vậy độ dài lớn nhất của cạnh hình vuông là 4 m.