cho a=7+7^2+7^3+...+7^2017+7^2018.Hãy chứng tỏ A là bội của 50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
M = 70 + 71 + 72 + 73 + ... + 72018 + 72019
M = (1 + 7) + 72(1 + 7) + ... + 72018(1 + 7)
M = 8 + 72.8 + ... + 72018.8
M = 8(1 + 72 + ... + 72018) \(⋮\)8
=> M \(\in\)B(8) (đpcm)
\(M=7^0+7^1+7^2+7^3+...+7^{2018}+7^{2019}\)
\(M=1+7+7^2\left(1+7\right)+...+7^{2018}\left(1+7\right)\)
\(M=8+7^2.8+...+7^{2018}.8⋮8\)
=> M là bội của 8
M = 70 + 71 + 72 + 73 + ... + 72018 + 72019
M = 1 + 71 + 72 + 73 + ... + 72018 + 72019
M = (1 + 71) + (72 + 73) + ... + (72018 + 72019)
M = (1 + 71) + 72. (1 + 71) + ... + 72018 + (1 + 71)
M = 8 + 72. 8 + 74. 8 + ... + 72018. 8
M = 8 . (72 + 74 + ... + 72018)
Vì 8 ⁝ 8
nên 8 . (72 + 74 + ... + 72018) ⁝ 8
Theo định nghĩa a ⁝ b <=> \(\left\{{}\begin{matrix}\\\\\end{matrix}\right.\)a là bội của b, b là ước của a
nên 8 . (72 + 74 + ... + 72018) ⁝ 8 => 8 . (72 + 74 + ... + 72018) là bội của 8
8 là ước của 8 . (72 + 74 + ... + 72018)
Vậy M là bội của 8
a) \(\overline{aaaaaa}=a.111111=a.3.37037\) \(⋮\)\(37037\)
b) Nhận thấy các hạng tử trong B đều chia hết cho 3 => B chia hết cho 3
\(B=3+3^3+3^5+3^7+...+3^{2017}+3^{2019}+3^{2021}\)
\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+....+\left(3^{2017}+3^{2019}+3^{2021}\right)\)
\(=3\left(1+3^2+3^4\right)+3^7\left(1+3^2+3^4\right)+...+3^{2017}\left(1+3^2+3^4\right)\)
\(=\left(1+3^2+3^4\right)\left(3+3^7+...+3^{2017}\right)\)
\(=91\left(3+3^7+....+3^{2017}\right)\)\(⋮\)\(91\)
mà (3;91) = 1
=> B chia hết cho 273
B chia hết cho 273
Còn câu a thì mình không biết nhé, xin lỗi bạn.
a, Nếu n = 2k ( k thuộc N ) thì : 7^n+2 = 49^n+2 = [B(3)+1]^n+2 = B(3)+1+2 = B(3)+3 chia hết cho 3
Nếu n=2k+1 ( k thuộc N ) thì : 7^n+2 = 7.49^n+2 = (7.49^n+14)-12 = 7.(49^n+2)-12 chia hết cho 3 ( vì 49^n+2 và 12 đều chia hết cho 3 )
=> (7^n+1).(7^n+2) chia hết cho 3 với mọi n thuộc N
Tk mk nha
b, Trong 3 số tự nhiên x,y,z luôn tìm được hai số cùng chẵn hoặc cùng lẻ. Ta có tổng của hai số này là chẵn, do đó (x + y)(y + z)(z + x) chia hết cho 2
=> (x + y)(y + z)(z + x) + 2016 chia hết cho 2 (vì 2016 chia hết cho 2)
Mà 20172018 không chia hết cho 2
Vậy không tồn tại các số tồn tại các số tự nhiên x,y,z thỏa mãn đề bài
A= 7+72+73+....+750
= (7 + 73 ) + (72 + 74) + ..... + (747 + 749) + (748 + 750)
= 7.(1 + 49) + 72.(1 + 49) + ...... + 747.(1 + 49) + 748.(1 + 49)
= 7. 50 + 72.50 + ...... + 747.50 + 748.50
= 50.( 7 + 72 + ..... +747 + 748) chai hết 50 ( đpcm)
Có sai đề ko e @@