K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2019

Bài giải

Theo đề bài, ta có: \(\frac{n^2+5n+15}{25}\)với n \(\in\)N

\(\frac{n^2+5n+15}{25}\)

\(\frac{n^2}{25}+\frac{5n}{25}+\frac{15}{25}\)

Vì 15 không chia hết cho 25

Nên \(\frac{n^2+5n+15}{25}\notin Z\)

\(\RightarrowĐPCM\)

15 tháng 12 2019

là số nguyên âm hay nguyên dương hả bạn

15 tháng 12 2019

số nguyên dương bạn nhé

15 tháng 12 2019

Mình làm rồi mà. Bạn đã gửi quá nhiều câu hỏi giống nhau

30 tháng 3 2020

Ghhg fhgcgh

16 tháng 9 2023

1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)

\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)

\(\Rightarrow13⋮d\)

\(\Rightarrow d\in\left\{1,13\right\}\)

Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)

2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\) 

\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\)

 Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)

 3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)

 4. Tương tự 3.

 

 

AH
Akai Haruma
Giáo viên
16 tháng 9 2023

Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.

14 tháng 12 2019

sao thế nếu dễ thì làm hộ cái

hiểu đề ko mà làm!