K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM và ΔDCM có 

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

b: Xét tứ giác ABDC có 

M là trung điểm của AD

M là trung điểm của BC

Do đó:ABDC là hình bình hành

Suy ra: AB//DC

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

21 tháng 12 2023

a: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

b: ta có: ΔABM=ΔDCM

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//DC
c: Xét ΔMEB vuông tại E và ΔMFC vuông tại F có

MB=MC

\(\widehat{EMB}=\widehat{FMC}\)(hai góc đối đỉnh)

Do đó: ΔMEB=ΔMFC

=>ME=MF

mà M nằm giữa E và F

nên M là trung điểm của EF

9 tháng 1 2019

A B C M D

CM : a) Xét tam giác ABM và tam giác DCM

Có BM = CM (gt)

  góc AMB = góc CMD (đối đỉnh)

MA = MD (gt)

=> tam giác ABM = tam giác DCM (c.g.c)

b) Ta có: tam giác ABM = tam giác DCM (cmt)

=> góc B = góc MCD (hai góc tương ứng)

Mà góc B và góc MCD ở vị trí so le trong

=> AB // DC

c) Xét tam giác ABM và tam giác ACM

có AB = AC (gt)

BM = CM (gt)

 AM : chung

=> tam giác ABM = tam giác ACM (c.c.c)

=> góc BMA = góc CMA (hai góc tương ứng)

Mà góc BMA + góc CMA = 1800 (kề bù)

hay 2\(\widehat{BMA}\)= 1800

=> góc BMA = 1800 : 2

=> góc BMA = 900

=> AM \(\perp\)BC

d) Để góc ADC = 450

<=> tam giác ABC cân tại A

a: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB//DC

c: Ta có: ΔACB cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

a: Xét ΔABM và ΔDCM có 

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

DO đó: ΔABM=ΔDCM

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

Suy ra: AB//DC

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM la đường cao

a: Xét ΔABM và ΔDCM có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔABM=ΔDCM

b: Xét tứ giác ABDC có

M là trung điểm của AD
M là trung điểm của BC

Do đó:ABDC là hình bình hành

Suy ra: AB//CD

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM la đường cao