Cho tam giac ABC nhon . Ke phan giac BE, CF.
a) Chung minh rang: tam giac AEF nhon.
b) Lay M tren EF, ke MH vuong goc voi BC, MK vuong goc voi AB, MT vuong goc voi AC. Chung minh: MH=MK+MT.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, có I là trung điểm của BC (Gt)
IM ⊥ BC (Gt)
=> IM là trung trực của BC (đn)
=> MB = MC (Định lí)
b, M thuộc tia phân giác của ^BAC (gt)
MH ⊥ AB (gt) và MK ⊥ AC (gt)
=> MH = MK (tính chất)
xét ΔMHB và ΔMKC có: MB = MC (Câu a)
^MHB = ^MKC = 90
=> ΔMHB = ΔMKC (ch-cgv)
=> MH = MK (Định nghĩa)
a.Xét tam giác ABM và ACM có: BM =MC ; góc ABM = góc ACM ; AB =AC
--> tam giác ABM = tam giác ACM ( cgc)
b. Xét tam giác BHM và CKM có: BHM = CKM =90 độ ; BM =MC ; HBM = KCM
--> tam giác BHM = CKM ( cạnh huyền - góc nhọn ) --> BH = CK ( 2 cạnh tương ứng )
c. Ta có : MK vuông góc AC , BP vuông góc AC --> MK// BP --> góc KMC = góc PBC (đồng vị )
mà KMC = HMB ( tam giác BHM = CKM ) --> góc PBC = HMB --> tam giác IBM cân
Hình bạn tự vẽ nhé ! ( Bạn thay các chữ cái bằng kí tự nhé !)
a) Do AH vuông góc với BC nên:
Góc AHB= Góc AHC=90 độ
Ta có: Góc BAH= 90 độ- góc B(1)
Góc CAH=90 độ- góc C(2)
Lại dó: Góc B=Góc C( Do tam giác ABC cân tại A)(3)
Kết hợp (1), (2), (3), ta suy ra: Góc BAH= Góc CAH
Xét tam giác ABH và tam giác ACH, có:
Góc BAH= Góc CAH( CM trên)
Chung AH
Góc AHB=Góc AHC( Đều bằng 90 độ)
=> Tam giác ABH=Tam giác ACH( G-c-g)
Khi đó: HB=HC( Cặp cạnh tương ứng)
-------> ĐPCM
a: Xét ΔBHI và ΔBMI có
BH=BM
góc HBI=góc MBI
BI chung
Do đó: ΔBHI=ΔBMI
Suy ra: góc BHI=góc BMI=90 độ
=>IM vuông góc với BC
b: Xét ΔIMC vuông tại M và ΔIKC vuông tại K có
CI chung
góc MCI=góc KCI
Do đó: ΔIMC=ΔIKC
Suy ra: góc CIM=góc CIK
c: BH=BM
CM=CK
Do đó: BH+CK=BM+CM=BC