K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

P/S: lấy trên bingbe

Vì x,y là số nguyên tố nên x>hoặc bằng 2, y lớn hơn hoặc bằng 2

Lại có x*2-6y*2=1

=>x*2 khác 6y*2

=>x*2+x-x-1=6y*2

=>(x*2-x)+(x-1)=6y*2

=>x.(x-1)+(x-1)=6y*2

=>(x+1).(x-1)=6y*2

Vì 6 chia hết cho 2 với V y thuộc N

Do đó (x+1).(x-1) chia hết cho 2

=> Ít nhất 1 trong 2 số (x-1);(x+1) chia hết cho 2

=> ít nhất 1 trong 2 số(x-1).(x+1) là số chẵn (1)

Lại có (x-1).(x+1) =2x chia hết cho 2

=>(x-1) và (x+1) cùng tính chẵn lẻ (2)

Từ (1) và (2)=> (x-1).(x+1) là hai số chẵn liên tiếp

Vì hai số chẵn liên tiếp luôn chia hết cho 8

=>(x-1).(x+1) chia hết cho 8

=>6y*2 chia hết cho 8

=>3y*2 chia hết cho 4

Mà (3,4)=1

=> y*2 chia hết cho 4

=>y=2 (2 thuộc N)T hay y=2 vào x*2-6y*2=1

Ta có x*2-6.2*2=1

=>x*2-24=1

=>x*2=25

=>x=5 (5 thuộc N)

Vậy x=5 và y=2

18 tháng 4 2022

Ta có: x2 – 2x + 1 = 6y2 -2x + 2

=> x2 – 1 = 6y2 => 6y2 = (x-1).(x+1) chia hết cho 2 , do   6y2 chia hết cho 2 

Mặt khác x-1 + x +1 = 2x chia hết cho 2 =>   (x-1) và (x+1) cùng  chẵn hoặc cùng lẻ.

Vậy (x-1) và (x+1) cùng  chẵn  => (x-1) và (x+1) là hai số chẵn liên tiếp

 (x-1).(x+1) chia hết cho 8 => 6y2 chia hết cho 8  =>  3y2 chia hết cho 4  => y2 chia hết cho 4  => y chia hết cho 2 

  y  =  2  ( y là số nguyên tố) , tìm được x = 5. 

Chúc học tốt!

NV
24 tháng 12 2021

\(\Leftrightarrow x^2-1=6y^2\)

Do \(6y^2\) chẵn và 1 lẻ \(\Rightarrow x^2\) lẻ \(\Rightarrow x\) lẻ \(\Rightarrow x=2k+1\)

\(\Rightarrow\left(2k+1\right)^2-1=6y^2\)

\(\Rightarrow4\left(k^2+k\right)=6y^2\)

\(\Rightarrow2\left(k^2+k\right)=3y^2\)

Do 2 chẵn  \(\Rightarrow3y^2\) chẵn \(\Rightarrow y^2\) chẵn \(\Rightarrow y\) chẵn

Mà y là SNT \(\Rightarrow y=2\)

Thay vào pt đầu: 

\(x^2+1=6.2^2+2\Rightarrow x=5\)

Vậy (x;y)=(5;2)

25 tháng 3 2022

Ta có: \(x^2-1=2y^2\)

Vì \(2y^2\) là số chẵn ⇒\(x^2\) là số lẻ ⇒ x là số lẻ

⇒ x= 2k+1

Ta có: \(\left(2k+1\right)^2-1=2y^2\)

⇒ \(4\left(k^2+k\right)=2y^2\)

\(2\left(k^2+k\right)=y^2\)

Vì 2 là số chẵn ⇒ \(y^2\) là số chẵn ⇒ y là số chẵn 

Mà y là số nguyên tố ⇒ y = 2

Ta lại có: \(x^2-1=2.2^2\)

⇒ \(x^2-1=8\)

\(x^2=8+1=9\)

⇒ x= -3 hoặc 3 

Vì x là số nguyên tố nên x =3

Vậy x=3, y=2

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Lời giải:

Vì $p$ là số nguyên tố lớn hơn 3 nên $p$ không chia hết cho 3.

Mà $p$ lẻ nên $p=6k+1$ hoặc $6k+5$ với $k$ tự nhiên.

TH1: $p=6k+1$ thì:

$p^2-1=(6k+1)^2-1=6k(6k+2)=12k(3k+1)$

Nếu $k$ lẻ thì $3k+1$ chẵn.

$\Rightarrow p^2-1=12k(3k+1)\vdots (12.2)$ hay $p^2-1\vdots 24$

Nếu $k$ chẵn thì $12k\vdots 24\Rightarrow p^2-1=12k(3k+1)\vdots 24$

TH2: $p=6k+5$

$p^2-1=(6k+5)^2-1=(6k+4)(6k+6)=12(3k+2)(k+1)$
Nếu $k$ chẵn thì $3k+2$ chẵn

$\Rightarrow 12(3k+2)\vdots 24\Rightarrow p^2-1=12(3k+2)(k+1)\vdots 24$

Nếu $k$ lẻ thì $k+1$ chẵn

$\Rightarrow 12(k+1)\vdots 24\Rightarrow p^2-1=12(3k+2)(k+1)\vdots 24$
Vậy $p^2-1\vdots 24$