cho các cặp số tự nhiên (x;y) thỏa mãn : \(3^x+171=y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d 10^n+72^n -1
=10^n -1+72n
=(10-1) [10^(n-1)+10^(n-2)+ .....................+10+1]+72n
=9[10^(n-1)+10^(n-2)+..........................-9n+81n
cho các cặp số tự nhiên (x;y)thỏa mãn (2x+1)(y-3)=10 cặp số cho tích xy lớn nhất là (..............)
Vì 10 = 2 * 5 = 1 * 10 nên có các trường hợp sau
- Trường hợp 1: 2x + 1 = 10, y - 3 = 1 (loại, vì 2x + 1 lẻ)
- Trường hợp 2: 2x + 1 = 1, y - 3 = 10 => x = 0, y = 13
- Trường hợp 3: 2x + 1 = 2, y - 3 = 5 (loại)
- Trường hợp 4: 2x + 1 = 5, y - 3 = 2 => x = 2, y = 5
Vậy cặp số cho tích xy lớn nhất là (2,5)
xy-x-y=2
xy-x-y+1=2+1
x(y-1) - (y-1)=3
(y-1)(x-1)=3
x;y nguyên
3=1.3=3.1=(-1)(-3)=(-3)(-1)
y-1 1 3 -1 -3
y 2 4 0 -2
x-1 3 1 -3 -1
x 4 2 -2 0
Vậy có những cặp x;y:
2;4
4;2
0;-2
-2;0
\(3^x+171=y^2\)
+) Với x = 0 ta có: \(1+171=y^2\)( loại )
+) Với x = 1, ta có: \(3+171=y^2\)( loại )
+) Với x > 1.
pt <=> \(9\left(3^{x-2}+19\right)=y^2\)
=> \(3^{x-2}+19=z^2\)với \(y=3z\)( z là số tự nhiên )
+) TH1: \(x-2=2k+1\)( k là số tự nhiên )
Ta có: \(3^{2k+1}+19=z^2\)
có: \(3^{2k+1}+19⋮2\)
nhưng \(3^{2k+1}+19=3^{2k}.3+1+16+2\): 4 dư 2
=> \(3^{2k+1}+19\) không phải là số chính phương
Vậy loại trường hợp này
+) TH2: \(x-2=2k\)( k là số tự nhiên )
Ta có: \(3^{2k}+19=z^2\)
<=> \(\left(z-3^k\right)\left(z+3^k\right)=19\) (1)
z, 3^k là số tự nhiên nên ( 1) <=> \(\hept{\begin{cases}z+3^k=19\\z-3^k=1\end{cases}\Leftrightarrow}\hept{\begin{cases}z=10\\k=2\end{cases}}\)=> x = 6; y = 30. Thử lại thấy thỏa mãn
Vậy....